実践ビッグデータ

機械学習の意味と役割--データの持っている価値を引き出す

小副川 健(富士通) 2015年01月08日 07時00分

  • このエントリーをはてなブックマークに追加

 今回はビッグデータ活用において重要な役割を持つ「機械学習」を取り上げる。

 機械学習とは大まかにいうと、データが持つ法則を見つけ出すアルゴリズムの総称である。その名の通り、経験をもとに知識を得る人間の学習過程に近い面がある。機械学習はすでに予測や分類、画像認識、商品のレコメンドなどに実際に使われている。筆者の携わってきた分析案件も、最終的に機械学習の問題に落とし込んだものが多い。

 本稿では、機械学習が大量のデータを扱う手段であり、データの持つ価値を引き出す手段であることを最近10年の将棋の人工知能の発展を例に述べ、機械学習のビジネスにおける応用のポイントと注意点を述べる。機械学習の具体的な手法、その数理までは踏み込まず、機械学習の持つ機能を抽象的にとらえそれを応用するポイントに絞って述べたい。

 機械学習によってデータの持つ価値を大きく引き出した例として、将棋の人工知能の飛躍的発展を紹介する。


 本稿執筆時点では、将棋の人工知能はプロ棋士に勝つこともあるほどのレベルになっているが、10年前はアマチュア有段者レベルと言われていた。10年間でハードウェアの性能も上がってはいるが、この飛躍的な発展は機械学習を本格的に導入したソフトウェア的な進化の影響が大きい。

 将棋の人工知能はそもそも、見込みのない手を省きながら、数手から数十手先を読み、優位に立つための最善手を探すものである。そのためには局面が有利なのか不利なのかを判定することが必要だ。将棋でありうる局面の数はおよそ10の220乗と言われており、全局面を網羅し、各局面の有利不利をリスト化するのは不可能である。実際、一部の定石と呼ばれる盤面を除くとそのようなリストは使われておらず、代わりに盤面の状況をデータ化し、優位性の数値を計算する「評価関数」と呼ばれる関数を持っている。

 評価関数は、例えば盤面の状況を表す「変数」(各駒の枚数や位置関係など)の重み付きの和のような数式を想像してもらえればよい。この重みのことを「パラメータ」と呼び、盤面の状況を表す変数一つひとつと対応すると考えていただきたい。深読みのアルゴリズムやハードウェアの性能を除くと、盤面からどのような変数を抽出するかの選択とパラメータの調整が人工知能の強さを左右する。

ZDNet Japan 記事を毎朝メールでまとめ読み(登録無料)

  • このエントリーをはてなブックマークに追加

この記事を読んだ方に

関連ホワイトペーパー

SpecialPR

連載

CIO
トランザクションの今昔物語
研究現場から見たAI
Fintechの正体
米ZDNet編集長Larryの独り言
大木豊成「仕事で使うアップルのトリセツ」
山本雅史「ハードから読み解くITトレンド放談」
田中克己「2020年のIT企業」
松岡功「一言もの申す」
松岡功「今週の明言」
内山悟志「IT部門はどこに向かうのか」
林 雅之「デジタル未来からの手紙」
谷川耕一「エンプラITならこれは知っとけ」
大河原克行「エンプラ徒然」
内製化とユーザー体験の関係
「プロジェクトマネジメント」の解き方
ITは「ひみつ道具」の夢を見る
セキュリティ
「企業セキュリティの歩き方」
「サイバーセキュリティ未来考」
「ネットワークセキュリティの要諦」
「セキュリティの論点」
スペシャル
課題解決のためのUI/UX
誰もが開発者になる時代 ~業務システム開発の現場を行く~
「Windows 10」法人導入の手引き
ソフトウェア開発パラダイムの進化
エンタープライズトレンド
10の事情
座談会@ZDNet
Dr.津田のクラウドトップガン対談
展望2017
Gartner Symposium
IBM World of Watson
de:code
Sapphire Now
VMworld
Microsoft WPC
Microsoft Connect()
HPE Discover
Oracle OpenWorld
Dell EMC World
AWS re:Invent
AWS Summit
PTC LiveWorx
より賢く活用するためのOSS最新動向
古賀政純「Dockerがもたらすビジネス変革」
中国ビジネス四方山話
ベトナムでビジネス
米株式動向
日本株展望
企業決算