海外コメンタリー

グラフデータベースがアナリティクスに有効な理由とは

Mary Shacklett (Special to TechRepublic) 翻訳校正: 石橋啓一郎

2016-06-01 06:30

 グラフデータベースはどんな定義からしても、ビッグデータ技術ではない。グラフデータベースは、従来のリレーショナルデータベースの代わりに使われる事例が増えてきている、単なるNoSQLデータベースの一種だ。

 とは言え、グラフデータベースをビッグデータやアナリティクスの文脈で議論することには意味がある。これは、グラフデータベースの特長が、複雑なデータの関係性を分析する能力を高めるために、舞台裏で利用されているからだ。さらに、組織がレポーティングをリアルタイムまたは準リアルタイムに移行するのにも役立っている。これらのトレンドは、どちらも最近のビッグデータの取り組みで注目されている内容でもあるが、企業でのレポーティングが、トランザクションを基にした文脈から関係性を基にした文脈へとシフトしつつあるのは、企業がビッグデータやアナリティクスに取り組んだことによる成果と言ってもいいだろう。

TechRepublic Japan関連記事

 グラフデータベースのソリューションを提供しているNeo4jの、北米におけるデベロッパーリレーション責任者であるRyan Boyd氏は、「グラフデータベースが効果的なのは、高度に直感的なデータモデルを扱うことができるためであり、オブジェクトとデータの間にある関係性を発見する能力を持っており、現実世界のあり方を反映できるためだ」と述べている。

 同氏によれば、グラフデータベースが企業に導入されている理由は、データハンドリングを通じて世界を効果的かつ直感的に記述できること、グラフデータベースが従来のリレーショナルデータベースと比べて、非常に高いパフォーマンスを出せる場合があること、そしてグラフデータベースはアジャイルであり、新しいデータモデルや既存のデータモデルの最適化をより少ない労力で簡単に行うことができることなどだという。こういったことは、なぜ可能なのだろうか。

 「リレーショナルデータベースでは、JOINステートメントを実行するたびに、アプリケーションがあるインデックスと別のデータセットを比較する必要がある。当社の顧客には、普段利用しているSQLクエリに、JOINの処理が20回以上必要なものがあるという企業もある。そのような処理のクエリは、場合によっては非常に時間がかかる。グラフデータベースの場合は、論理的なスタート地点を見つけて、そこから枝を広げて関係性を特定していく。たとえば、『Johnの友達の友達をすべて発見する』というクエリを書くとしよう。グラフデータベースでは、異なるインデックスをJOINで結合する代わりに、メモリ内やキャッシュ内でポインタ演算を実行してこの処理を行う」とBoyd氏は説明する。その結果、計算量も少なくなり、処理も高速になる。

グラフデータベースがアナリティクスに有効な理由
提供:iStock/whyframestudio

ZDNET Japan 記事を毎朝メールでまとめ読み(登録無料)

ホワイトペーパー

新着

ランキング

  1. ビジネスアプリケーション

    生成 AI を活用した革新的な事例 56 選 課題と解決方法を一挙紹介

  2. OS

    Windows 11移行の不安を“マンガ”でわかりやすく解消!情シスと現場の疑問に応える実践ガイド

  3. ビジネスアプリケーション

    調査結果が示す「生成 AI 」活用によるソフトウェア開発の現状、ツール選定のポイントも解説

  4. ビジネスアプリケーション

    生成AI活用で変わるシステム開発の現場、生成AIでローコード開発を強化する4つの方法

  5. ビジネスアプリケーション

    RAG やベクトル埋め込みは可能か、生成 AI 活用で求められるデータベースの要件を探る

ZDNET Japan クイックポール

所属する組織のデータ活用状況はどの段階にありますか?

NEWSLETTERS

エンタープライズコンピューティングの最前線を配信

ZDNET Japanは、CIOとITマネージャーを対象に、ビジネス課題の解決とITを活用した新たな価値創造を支援します。
ITビジネス全般については、CNET Japanをご覧ください。

このサイトでは、利用状況の把握や広告配信などのために、Cookieなどを使用してアクセスデータを取得・利用しています。 これ以降ページを遷移した場合、Cookieなどの設定や使用に同意したことになります。
Cookieなどの設定や使用の詳細、オプトアウトについては詳細をご覧ください。
[ 閉じる ]