編集部からのお知らせ
オススメ記事選集PDF:MAツールのいま
「これからの企業IT」の記事はこちら
事業会社で取り組むデータ分析の実際

事業者がデータを基にサービスを改善する方法--分析の実際

伊藤徹郎

2016-08-17 07:00

 普段の業務でどのようなデータを分析し、業務改善やサービス改善または意思決定に活用しているでしょうか。勘定系のデータや各種目標として設定するべき指標(KPI)の集計データなどを日々目にしていることが多いと思います。

 例えば、営業系のKPIであればSalesforceなどのダッシュボードを目にするでしょうし、ウェブサイトのKPIであればGoogle AnalyticsやSiteCatalystなどのデータ。アプリの解析ではFirebaseやMixpanelなどを目にするでしょう。

 これらは基本的には既に何らかのロジックで集計をされたデータなので、日々のモニタリングなどには向いていますが、何か検証をしようとしたり、探索的な分析を実施しようとしたりする場合には不向きな場合もあります。そんな時は自社のデータベースに蓄積されているデータを元に自分自身でさまざまなロジックで集計や分析をしたくなるものです。

 しかし、ここで多くの企業で問題になる点は、「こういう分析したいけど、そのデータはどこにあるのか」ということです。

 インフラ部門などデータマネジメントを担っている担当者に聞いてすぐにわかる場合もありますし、そもそもそのありかを知っている担当者を探すところからスタートするケースもあるでしょう。最近ではセキュリティインシデントによる企業ブランドの低下の事例も発生しているので、データへのアクセスを厳格に管理する企業が多いと思います。

 セキュリティウォールが高くなれば高くなるほど利用者としてデータにアクセスするハードルは高くなるので、自社のセキュリティポリシーがどの程度なのかは把握しておくべきでしょう。

 また、基幹系のデータではあまりありませんが、ウェブやアプリのログなどはそもそもデータを蓄積していないこともあります。そういう場合は根気よく計測の仕込みを依頼し、データが蓄積するまで待ちましょう。

 さて、そのようなハードルを乗り越えてデータにアクセスできるようになった後に立ちはだかる問題があります。それはデータベースに蓄積されているデータの種類とマスタデータとの突合を実施するための関係性の把握です。

 いわゆる実体関連図(ER図)のようなものがあれば、それをもとにリレーショナルを定義すればよいのですが、多くの場合、整備されていなかったり、そもそもそういったものがなく、直接データベースを触りながらエンジニアに確認しながら進めるといったことが必要です。

 またリレーショナルデータベースマネジメントシステム(RDBMS)では、上記のような進め方でよいのですが、MongoDBなどキーバリューモデルを採用するNoSQLなどの場合はエンジニアに協力してもらわないとうまくいかない場合も多いです。関係部署とのリレーションも良好にしておかなければなりません。一般的にマーケティング部と情報システム部門はデータに対する考え方などの観点から敵対する傾向にあるようなので、この点は特に注意したいですね。これはデータを活用したいマーケティングと情報漏えいの可能性を少しでも減らしたい情報システム部門で考え方が異なるためです。

ZDNet Japan 記事を毎朝メールでまとめ読み(登録無料)

特集

CIO

モバイル

セキュリティ

スペシャル

ホワイトペーパー

新着

ランキング

  1. クラウドコンピューティング

    AWSが提唱する、モダン分析プラットフォームのアーキテクチャと構築手法

  2. クラウドコンピューティング

    AWS資料、ジョブに特化した目的別データベースを選定するためのガイド

  3. セキュリティ

    Zero Trust Workbook--ゼロ トラストの先にある世界を知るためのガイダンス

  4. セキュリティ

    「ゼロトラスト」時代のネットワークセキュリティの思わぬ落とし穴に注意せよ

  5. クラウドコンピューティング

    データ駆動型の組織でビジネスの俊敏性を実現するには?戦略的な意思決定とイノベーションを両立へ

NEWSLETTERS

エンタープライズ・コンピューティングの最前線を配信

ZDNet Japanは、CIOとITマネージャーを対象に、ビジネス課題の解決とITを活用した新たな価値創造を支援します。
ITビジネス全般については、CNET Japanをご覧ください。

このサイトでは、利用状況の把握や広告配信などのために、Cookieなどを使用してアクセスデータを取得・利用しています。 これ以降ページを遷移した場合、Cookieなどの設定や使用に同意したことになります。
Cookieなどの設定や使用の詳細、オプトアウトについては詳細をご覧ください。
[ 閉じる ]