IBM、画期的なインメモリコンピューティングでAIのコスト削減へ

Liam Tung (ZDNet.com) 翻訳校正: 藤本京子 2018年04月25日 06時30分

  • このエントリーをはてなブックマークに追加
  • 印刷

 IBM Researchによると、同社はインメモリコンピューティングの新たな手法を開発したという。この手法が、MicrosoftとGoogleの追求するハイパフォーマンスアプリケーションや機械学習アプリケーション向けハードウェアアクセラレータの解につながる可能性があるという。

 IBMの研究者はこの新たな「混合精度のインメモリコンピューティング」手法を、論文審査のある専門誌「Nature Electronics」にて発表した。

 IBMは今回の手法で、ソフトウェアが別々のCPUとRAMユニット間のデータ転送を必要とする従来のコンピューティングアーキテクチャとは異なる方法を採用している。

 IBMによると、従来の設計はフォン・ノイマン・アーキテクチャといわれるもので、プロセッサとメモリ間で大量のデータ転送が必要となるデータ分析や機械学習アプリケーションではボトルネックが発生する。データ転送はエネルギーも大量に消費される処理だ。

 この課題をIBMはアナログ相変化メモリ(PCM)チップによって一部解決しようとしている。同チップは現在、100万個のナノスケールPCMデバイスで構成される500×2000クロスバーアレイのプロトタイプに採用されている。

 PCMユニットの主な利点は、CPUやGPUにデータを転送することなく大量のデータ処理にほぼ対応できることで、エネルギー消費を抑えつつ高速処理が可能となる。

 IBMのPCMユニットは、CPUアクセラレータとして機能する。Microsoftが「Bing」の高速化と機械学習の向上に利用しているフィールド・プログラマブル・ゲート・アレイ(FPGA)チップと似たようなものだ。

 IBMによると、同社のPCMチップは一定の条件下においてアナログ方式で演算処理が実行でき、4ビットFPGAメモリチップの80分の1のエネルギー消費量で同等の精度を実現することが同社の研究によって明らかになったという。

 アナログPCMハードウェアの欠点は、高精度計算に向けたものではないという点だ。幸いデジタルCPUやデジタルGPUは高精度計算に向いていることから、IBMはハイブリッドアーキテクチャによってパフォーマンスの速度と効率性、さらには精度のバランスを保てるのではないかと考えている。

 この設計では処理の大半をメモリに任せることになり、軽量の負荷をCPUにかけて精度の補正処理を行うことになる。

 IBMチューリッヒ研究所の電気エンジニアで、今回の論文の主要執筆者でもあるManuel Le Gallo氏によると、この設計はクラウド上の認識コンピューティングで有望視されるもので、研究者らが現在競い合っているハイパフォーマンスコンピュータへのアクセスを自由化する可能性もあるという。

 「現在の精度で、高精度GPUおよびCPUを稼働させた時と比べてエネルギー消費を6分の1に削減できた」とLe Gallo氏は米ZDNetに明かした。

 「アナログコンピューティングに取り組むにあたり、精度の低さには標準プロセッサと組み合わせることで対応する。今取り組んでいるのは、大量の演算タスクをPCMデバイスに投げ込みつつ、同時に正確な最終結果を得ることだ」(Le Gallo氏)

 この技術は、デジタル画像認識のようなアプリケーションに適している。一部のヘルスケアアプリケーションと同様、数ピクセルを誤認しても認識率に影響が出ないためだ。

 「大量の演算処理を低い認識率で実行できる。アナログでは、PCMが非常にエネルギー効率が高い。その上で、従来のプロセッサを利用して精度を向上させる」(同氏)

 IBMのプロトタイプメモリチップはまだ初期段階で、わずか1Mバイトの大きさだ。現在のデータセンター規模のアプリケーションで利用するには、数兆台のPCMデバイスでGバイト級のメモリにアクセスする必要があるだろう。

 それでもIBMは、より大規模なPCMデバイスアレイを構築するか、複数のPCMデバイスをパラレル稼働させることで目標を達成できると考えている。

この記事は海外CBS Interactive発の記事を朝日インタラクティブが日本向けに編集したものです。

ZDNet Japan 記事を毎朝メールでまとめ読み(登録無料)

  • このエントリーをはてなブックマークに追加

SpecialPR

連載

CIO
月刊 Windows 10移行の心・技・体
ITアナリストが知る日本企業の「ITの盲点」
シェアリングエコノミーの衝撃
デジタル“失敗学”
コンサルティング現場のカラクリ
Rethink Internet:インターネット再考
インシデントをもたらすヒューマンエラー
トランザクションの今昔物語
エリック松永のデジタルIQ道場
研究現場から見たAI
Fintechの正体
米ZDNet編集長Larryの独り言
大木豊成「仕事で使うアップルのトリセツ」
山本雅史「ハードから読み解くITトレンド放談」
田中克己「展望2020年のIT企業」
松岡功「一言もの申す」
松岡功「今週の明言」
内山悟志「IT部門はどこに向かうのか」
林 雅之「デジタル未来からの手紙」
谷川耕一「エンプラITならこれは知っとけ」
大河原克行「エンプラ徒然」
内製化とユーザー体験の関係
「プロジェクトマネジメント」の解き方
ITは「ひみつ道具」の夢を見る
セキュリティ
セキュリティインシデント対応の現場
エンドポイントセキュリティの4つの「基礎」
企業セキュリティの歩き方
サイバーセキュリティ未来考
ネットワークセキュリティの要諦
セキュリティの論点
スペシャル
エンタープライズAIの隆盛
インシュアテックで変わる保険業界
顧客は勝手に育たない--MAツール導入の心得
「ひとり情シス」の本当のところ
ざっくり解決!SNS担当者お悩み相談室
生産性向上に効くビジネスITツール最前線
ざっくりわかるSNSマーケティング入門
課題解決のためのUI/UX
誰もが開発者になる時代 ~業務システム開発の現場を行く~
「Windows 10」法人導入の手引き
ソフトウェア開発パラダイムの進化
エンタープライズトレンド
10の事情
座談会@ZDNet
Dr.津田のクラウドトップガン対談
Gartner Symposium
IBM World of Watson
de:code
Sapphire Now
VMworld
Microsoft Inspire
Microsoft Connect()
HPE Discover
Oracle OpenWorld
Dell Technologies World
AWS re:Invent
AWS Summit
PTC LiveWorx
吉田行男「より賢く活用するためのOSS最新動向」
古賀政純「Dockerがもたらすビジネス変革」
中国ビジネス四方山話
ベトナムでビジネス
日本株展望
企業決算
このサイトでは、利用状況の把握や広告配信などのために、Cookieなどを使用してアクセスデータを取得・利用しています。 これ以降ページを遷移した場合、Cookieなどの設定や使用に同意したことになります。
Cookieなどの設定や使用の詳細、オプトアウトについては詳細をご覧ください。
[ 閉じる ]