編集部からのお知らせ
解説集:台頭するロボット市場のいま
解説集:データ活用で考えるデータの選び方

オラクル、「GraphPipe」公開--機械学習モデル配備などをよりシンプルに

Stephanie Condon (ZDNet.com) 翻訳校正: 編集部

2018-08-16 10:38

 機械学習(ML)モデルの訓練は、その用途に応じたテクニックを用いる場合がしばしばある。これにより、サーバ間やさまざまな分野間でのモデルの配備に課題がもたらされている。

 Oracleは、テンソルデータをやり取りするための高性能な標準ネットワークプロトコルを新たにオープンソース化することで、こうした課題を解決しようとしている。「GraphPipe」というこの新しい標準によって、企業はフレームワークに縛られることなく、MLモデルの配備や、それに対するクエリの実行を容易に行えるようになる。

 GraphPipeが解決しようとしているのは次の3つの課題だ。1つ目の課題とは、モデルに付随するAPIが標準化されていないところにある。このため、業務アプリケーションはたいていの場合、配備されたモデルとの通信に専用のクライアントが必要になる。2つ目の課題は、モデルのサーバを構築するのは簡単な作業ではなく、すぐに使える配備ソリューションがほとんど存在していないというところにある。そして3つ目の課題は、企業が現在使用しているpython-JSON APIなどのソリューションは、パフォーマンスに対する要求がシビアな業務アプリケーションに応えるだけの性能を有していないところにある。

 GraphPipeには、フラットバッファの定義一式と、そのフラットバッファ定義に準じたモデルを確実に提供するためのガイドライン、「TensorFlow」と「ONNX」「caffe2」のモデルを取り扱う際の実例、GraphPipe経由でモデルにクエリを発行する際に使用するクライアントライブラリが含まれている。

 こういったツールを用いることで、複数のサーバをまたがってモデルを配備したり、さまざまなフレームワーク間で、共通のプロトコルを用いてモデル同士を連携させたりできるようになる。またGraphPipeは、遠隔地でモデルを稼働させる必要がある、IoTアプリケーション向けのMLの配備にも活用できるはずだ。

Oracle

この記事は海外CBS Interactive発の記事を朝日インタラクティブが日本向けに編集したものです。

ZDNet Japan 記事を毎朝メールでまとめ読み(登録無料)

Special PR

特集

CIO

セキュリティ

スペシャル

ホワイトペーパー

新着

ランキング

  1. クラウドコンピューティング

    AI導入に立ちはだかる「データ」「複雑さ」「コスト」「人材」の壁をどう乗り切ればいいのか?

  2. クラウドコンピューティング

    【IDC調査】2026年には75%のアプリがAIを実装!導入で遅れた企業はどう“逆転”すべきか?

  3. 運用管理

    経産省調査で明らかに:未だにレガシーシステムを抱える企業が8割!オープン化でよくある課題とは?

  4. 運用管理

    AWS東京リージョンの大規模障害に学ぶ、パブリッククラウド上のシステムの迅速な復旧方法

  5. windows-server

    【ユースケース】ソフトウェア開発にDell EMCインフラ+コンテナを使うメリット

NEWSLETTERS

エンタープライズ・コンピューティングの最前線を配信

ZDNet Japanは、CIOとITマネージャーを対象に、ビジネス課題の解決とITを活用した新たな価値創造を支援します。
ITビジネス全般については、CNET Japanをご覧ください。

このサイトでは、利用状況の把握や広告配信などのために、Cookieなどを使用してアクセスデータを取得・利用しています。 これ以降ページを遷移した場合、Cookieなどの設定や使用に同意したことになります。
Cookieなどの設定や使用の詳細、オプトアウトについては詳細をご覧ください。
[ 閉じる ]