リコー、AIモデルの学習を26倍高速化する回路アーキテクチャを開発

NO BUDGET 2018年12月28日 12時33分

  • このエントリーをはてなブックマークに追加
  • 印刷

 リコーは12月26日、人工知能(AI)モデルの学習速度を26倍高速化し、電力効率を90倍向上させる回路アーキテクチャを開発したと発表した。

 この回路アーキテクチャは、AIの機械学習手法の1つである「Gradient Boosting Decision Tree(GBDT:勾配ブースティング決定木)モデル」を効率化するもの。GBDTは、データベースなどで構造化された大量データの学習に高い性能を発揮する。

 応用先として、オンライン広告のリアルタイムビッディング(Real-Time Bidding)、Eコマースでのリコメンデーションなどのウェブ分野、コンピュータによる株式の高頻度取引(High Frequency Trading)などの金融分野、サイバー攻撃の検出などのセキュリティ分野、ロボティクスなどが考えらている。また、モノのインターネット(IoT)機器をはじめとするエッジ端末においても、その高い電力効率を生かして、高度なモデルの学習が可能となる。

モデル学習時間の比較(出典:リコー)
モデル学習時間の比較(出典:リコー)
1データ当たりの学習消費電力の比較(出典:リコー)
1データ当たりの学習消費電力の比較(出典:リコー)

 この回路アーキテクチャを、Field-Programmable Gate Array(FPGA:設計者がプログラムによって設定を変更できる集積回路)上に実装して性能を比較したところ、CPU/GPUを用いた一般的なソフトウェアライブラリ(XGBoost (extreme gradient boosting)、LightGBM、CatBoost)と比べて、26〜259倍の高速化を実現した。また、モデル学習の電力効率は、GPU/CPUと比較して90〜1105倍となり、学習したモデルの予測精度においても、これらのソフトウェアライブラリにより学習したモデルと同等であることが確認された。

ZDNet Japan 記事を毎朝メールでまとめ読み(登録無料)

  • このエントリーをはてなブックマークに追加

SpecialPR

連載

CIO
月刊 Windows 10移行の心・技・体
ITアナリストが知る日本企業の「ITの盲点」
シェアリングエコノミーの衝撃
デジタル“失敗学”
コンサルティング現場のカラクリ
Rethink Internet:インターネット再考
インシデントをもたらすヒューマンエラー
トランザクションの今昔物語
エリック松永のデジタルIQ道場
研究現場から見たAI
Fintechの正体
米ZDNet編集長Larryの独り言
大木豊成「仕事で使うアップルのトリセツ」
山本雅史「ハードから読み解くITトレンド放談」
田中克己「展望2020年のIT企業」
松岡功「一言もの申す」
松岡功「今週の明言」
内山悟志「IT部門はどこに向かうのか」
林 雅之「デジタル未来からの手紙」
谷川耕一「エンプラITならこれは知っとけ」
大河原克行「エンプラ徒然」
内製化とユーザー体験の関係
「プロジェクトマネジメント」の解き方
ITは「ひみつ道具」の夢を見る
セキュリティ
セキュリティインシデント対応の現場
エンドポイントセキュリティの4つの「基礎」
企業セキュリティの歩き方
サイバーセキュリティ未来考
ネットワークセキュリティの要諦
セキュリティの論点
スペシャル
エンタープライズAIの隆盛
インシュアテックで変わる保険業界
顧客は勝手に育たない--MAツール導入の心得
「ひとり情シス」の本当のところ
ざっくり解決!SNS担当者お悩み相談室
生産性向上に効くビジネスITツール最前線
ざっくりわかるSNSマーケティング入門
課題解決のためのUI/UX
誰もが開発者になる時代 ~業務システム開発の現場を行く~
「Windows 10」法人導入の手引き
ソフトウェア開発パラダイムの進化
エンタープライズトレンド
10の事情
座談会@ZDNet
Dr.津田のクラウドトップガン対談
Gartner Symposium
IBM World of Watson
de:code
Sapphire Now
VMworld
Microsoft WPC
Microsoft Connect()
HPE Discover
Oracle OpenWorld
Dell Technologies World
AWS re:Invent
AWS Summit
PTC LiveWorx
吉田行男「より賢く活用するためのOSS最新動向」
古賀政純「Dockerがもたらすビジネス変革」
中国ビジネス四方山話
ベトナムでビジネス
日本株展望
企業決算
このサイトでは、利用状況の把握や広告配信などのために、Cookieなどを使用してアクセスデータを取得・利用しています。 これ以降ページを遷移した場合、Cookieなどの設定や使用に同意したことになります。
Cookieなどの設定や使用の詳細、オプトアウトについては詳細をご覧ください。
[ 閉じる ]