調査

NEC、創薬の予測モデル構築を実証--連合学習と秘密計算の技術活用

NO BUDGET

2022-03-17 15:36

 NECは、データを暗号化したまま計算処理ができる秘密計算技術を用いた複数組織間のデータ統合の有効性の検証を目的に、創薬における予測モデルの構築に関する実証実験を実施した。実施期間は2021年10月〜2022年2月の5カ月間。

 同実証は、京都大学 大学院 医学研究科の小島諒介講師、岩田浩明特定准教授、奥野恭史教授とNECとの継続的な議論を踏まえて行った。

 機械学習ライブラリー「kMoL」にNECの秘密計算技術を適用した毒性予測モデルなどにおいて、単体学習とのテスト精度・学習時間を比較した。クライアント数は2とした。

生成したモデルの精度比較
生成したモデルの精度比較

 実証実験の結果、秘密計算技術を適用して構築した人工知能(AI)モデルは、連合学習技術のみで構築したAIモデルと比較して同等の精度を満たすと確認した。これにより、秘密計算技術が毒性予測モデルの構築において化合物の構造データの秘匿性の向上に寄与する実用的な手段であると実証した。

 連合学習技術を用いたシステムでは、機密データである化合物情報と活性情報などを直接拠出することなくAIモデルの構築・統合が可能となり、情報の機密性を担保しつつ企業・組織間の連携ができた。

 今回、連合学習技術に秘密分散方式の秘密計算技術を適用することで、連合学習技術単独の場合に加えて、統合時のAIモデルの秘匿性をさらに高めることを試みた。秘密計算技術を用いることで、3つのノードに分散してAIモデルの統合処理を行うため、情報理論的安全性を確保できる。

 実証での使用データは、2014年に行われた米国における毒性学に関する共同研究プロジェクト「Tox21(The Toxicology in the 21st Century)」におけるコンペティション「Tox21 Data Challenge 2014」で使用されたデータセットと毒性予測のkMoLサンプルを使用した。

ZDNET Japan 記事を毎朝メールでまとめ読み(登録無料)

ホワイトペーパー

新着

ランキング

  1. ビジネスアプリケーション

    生成 AI 「Gemini」活用メリット、職種別・役職別のプロンプトも一挙に紹介

  2. セキュリティ

    まずは“交渉術”を磨くこと!情報セキュリティ担当者の使命を果たすための必須事項とは

  3. セキュリティ

    迫るISMS新規格への移行期限--ISO/IEC27001改訂の意味と求められる対応策とは

  4. セキュリティ

    マンガで分かる「クラウド型WAF」の特徴と仕組み、有効活用するポイントも解説

  5. ビジネスアプリケーション

    急速に進むIT運用におけるAI・生成AIの活用--実態調査から見るユーザー企業の課題と将来展望

ZDNET Japan クイックポール

所属する組織のデータ活用状況はどの段階にありますか?

NEWSLETTERS

エンタープライズコンピューティングの最前線を配信

ZDNET Japanは、CIOとITマネージャーを対象に、ビジネス課題の解決とITを活用した新たな価値創造を支援します。
ITビジネス全般については、CNET Japanをご覧ください。

このサイトでは、利用状況の把握や広告配信などのために、Cookieなどを使用してアクセスデータを取得・利用しています。 これ以降ページを遷移した場合、Cookieなどの設定や使用に同意したことになります。
Cookieなどの設定や使用の詳細、オプトアウトについては詳細をご覧ください。
[ 閉じる ]