編集部からのお知らせ
量子コンピューティングへの注目
特集まとめ:高まるCISOの重要性

ホワイトペーパー

機械学習の精度が低いのはデータのせい?!つまづきやすい「データ準備」を解決する10のヒント

株式会社アシスト(Paxata) 2018-11-19

Iが身近な存在となり、これまではハードルの高かった機械学習が、ビジネス部門のユーザーにも広く利用されるようになりつつある。しかし意外と知られてないのが、機械学習の予測精度を決めるのは、アルゴリズムではなく、アルゴリズムにかけるデータそのものという事実である。

実際、機械学習の現場では、ユーザーの実に90%が「事前のデータ準備が重要である」と考えていることが明らかになった。機械学習が進むほど、この「データ準備(データ・プレパレーション)」は、が非常に重要なステップになっている。

本資料では、機械学習の予測モデルの精度を上げるための効果的なデータ準備に関する10のヒントとともに、エンタープライズのデータ・プレパレーションを実現するまったく新しいツールである、アシストが提供する「Paxata(パクサタ)」について解説している。ダウンロードしてAI活用の“次のステップ”に踏み出していただきたい。

CNET_IDでログインして資料をご覧ください

CNET_IDはCNET Japan/ZDNet Japanでご利用いただける共通IDです

パスワードをお忘れですか?

CNET_IDをお持ちでない方は
CNET_ID新規登録(無料)

ホワイトペーパー

新着

ランキング

  1. 経営

    5分でわかる、レポート作成の心得!成果至上主義のせっかちな上司も納得のレポートとは

  2. ビジネスアプリケーション

    たしか、あのデータは、こっちのアプリにあったはず…--業務改善のためのアプリ導入がストレスの原因に?

  3. 開発

    初心者でもわかる「コンテナとは?」から語るセミナー、ピュア・ストレージが最大の買収で得たものとは

  4. 運用管理

    リモートワイプ以外も充実、最新MDMのデバイス管理機能 担当者が知っておくべき3つの新常識

  5. 経営

    ノートPCは従来ながらの選び方ではダメ!新しい働き方にも対応する失敗しない選び方を徹底解説

このサイトでは、利用状況の把握や広告配信などのために、Cookieなどを使用してアクセスデータを取得・利用しています。 これ以降ページを遷移した場合、Cookieなどの設定や使用に同意したことになります。
Cookieなどの設定や使用の詳細、オプトアウトについては詳細をご覧ください。
[ 閉じる ]