生まれ続ける「データの奔流」を、どこまで意思決定に生かせるか?--リアルタイムBIの可能性

梅田正隆(ロビンソン)

2010-07-08 15:00

 従来のデータ分析は「動かないデータ(静的データ)」を対象にしてきた。たとえば、日々の各店舗の売上明細をデータウェアハウス(DWH)に集めて、商品別に売上を集計してランキングを出したり、どんな組み合わせで商品が売れているのかを調べたり、あるいは1年間分のデータの推移を見たり、前年のデータと比較したりといった具合だ。いったんデータを蓄積して、その中から何かを見つける。従来のデータ分析は、いわば「過去の事象」に注目してきたとも言える。

 しかし現代の人々は、「いま起こっている」「より多くのことを」「もっと早く」知りたいと考え始めている。時々刻々と流れてくる大量のデータ、いわゆる「動いているデータ(動的データ)」をリアルタイムに処理するニーズが高まっている。「その時点で起こった事象の変化」に直ちに反応することで、新しい価値を生み出したいと考えるからだ。そんな動的データのリアルタイムなデータ処理を実現する手段として注目を集めているのが「ストリームコンピューティング」だ。

「動いている」データをストリーム処理

 先ほど述べた静的データの処理は一般に「バッチ処理」、動的データの処理は「ストリーム処理」と呼ばれている。爆発的に増大するデータについて、従来のようにデータをいったんストレージに取り込んで、格納したデータを解析するバッチ処理は、データ量が増えるにつれて多くの処理時間を要するようになる。処理に「半日」かかる、というのはよくある話だ。

 これに対してストリーム処理では、データを受信したら、ただちにメモリにバッファリング(蓄積)し、オンメモリで逐次的、かつ超高速にデータ処理を実行する。そのため、連続的かつ大量に発生するデータストリームをストレージに格納せずに済み、また処理のリアルタイム性も確保できる。

従来のデータ処理と、ストリームコンピューティングとの比較イメージ 従来のデータ処理と、ストリームコンピューティングとの比較イメージ。データとクエリの位置が異なる(出典:日本IBM、画像クリックで拡大表示)

 このストリームコンピューティングをいち早く商用化したのがIBMだ。IBMは2003年頃からワトソン研究所でストリームコンピューティングの研究に着手し、5年の歳月をかけて研究プロジェクト「System S」を成功させた。

 プロジェクトは、ストリームコンピューティング専用のプログラミング言語「SPADE」をはじめ、統合開発環境や処理を実行するランタイム環境、さらにはデータ解析用のツールキットや、アウトプットアダプタ、ソースアダプタまでを開発した。まさにストリーム処理に必要なソフトウェア一式をすべて自前で開発したわけだ。

 その成果は、同社のストリームコンピューティングソフトウェア製品である「IBM InfoSphere Streams」として商品化されている。

 「ストリームコンピューティングという新しいデータ処理が、最もよく使われるのがリアルタイムBIだろう」と話すのは、日本IBM、ソフトウェア事業技術理事である菅原香代子氏だ。

ZDNET Japan 記事を毎朝メールでまとめ読み(登録無料)

関連記事

ホワイトペーパー

新着

ランキング

  1. セキュリティ

    セキュリティ担当者に贈る、従業員のリテラシーが測れる「情報セキュリティ理解度チェックテスト」

  2. クラウドコンピューティング

    生成 AI の真価を引き出すアプリケーション戦略--ユースケースから導くアプローチ

  3. セキュリティ

    サイバー攻撃の“大規模感染”、調査でみえた2024年の脅威動向と課題解決策

  4. セキュリティ

    従業員のセキュリティ教育の成功に役立つ「従業員教育ToDoリスト」10ステップ

  5. セキュリティ

    IoTデバイスや重要インフラを標的としたサイバー攻撃が増加、2023年下半期グローバル脅威レポート

ZDNET Japan クイックポール

所属する組織のデータ活用状況はどの段階にありますか?

NEWSLETTERS

エンタープライズコンピューティングの最前線を配信

ZDNET Japanは、CIOとITマネージャーを対象に、ビジネス課題の解決とITを活用した新たな価値創造を支援します。
ITビジネス全般については、CNET Japanをご覧ください。

このサイトでは、利用状況の把握や広告配信などのために、Cookieなどを使用してアクセスデータを取得・利用しています。 これ以降ページを遷移した場合、Cookieなどの設定や使用に同意したことになります。
Cookieなどの設定や使用の詳細、オプトアウトについては詳細をご覧ください。
[ 閉じる ]