海外コメンタリー

Facebookの多様なサービスを支える機械学習--いかにスケールに対応しているか

John Morris (Special to ZDNet.com) 翻訳校正: 石橋啓一郎 2018年06月21日 06時30分

  • このエントリーをはてなブックマークに追加

 Facebookには20億人のユーザーがいるが、その大半は、この規模のサービスが、どれだけ人工知能(AI)に依存しているかを理解していないかもしれない。ニュースフィード、検索、広告などのFacebookの製品には機械学習が使われており、顔認識や自動タグ付け、機械翻訳、音声認識、コンテンツ理解、偽アカウントや問題のあるコンテンツを見分ける異常検知など、同社のさまざまなサービスを機械学習が支えている。

 同社が発表する数字は驚くようなものばかりだ。Facebookの機械学習システムは、1日あたり合計200兆件以上の予測と、50億件を超える翻訳を処理している。また同社のアルゴリズムは、毎日数百万件の偽アカウントを自動的に削除しているという。

 FacebookのAIインフラグループ責任者Kim Hazelwood氏は、2018年の「International Symposium on Computer Architecture」(ISCA)で行った基調講演で、この規模の機械学習を扱うためのハードウェアとソフトウェアの設計について説明した。同氏は、ハードウェアやソフトウェアのアーキテクトに対して、流行を追うばかりではなく、機械学習のための「フルスタックソリューション」の開発を目指すべきだと述べた。「誰もがやっていることを追いかけるだけでなく、適切な問題を解決することが非常に大切だ」とHazelwood氏は述べた。

 FacebookのAIインフラでは、さまざまなワークロードを扱う必要がある。モデルの中には、数分でトレーニングできるものもあれば、数日から数週間かかるものもある。例えば、ニュースフィードや広告には、ほかのアルゴリズムと比べ最大で100倍のコンピューティング資源を必要とする。このため、同社では可能な限り「従来の保守的な機械学習」を使用し、深層学習(多層パーセプトロン(MLP)、畳み込みニューラルネットワーク(CNN)、再帰型ニューラルネットワーク(RNN/LSTM))は絶対に必要な場合にしか使用しないという。

 同社のAIエコシステムには、3つの主要なコンポーネントが含まれている。その3つとは、インフラ、その上で実行されるワークフロー管理ソフトウェア、そして「PyTorch」のような核となる機械学習フレームワークだ。

 Facebookは2010年頃以降、自社のデータセンターとサーバを社内で設計している。現在では、十数カ所の巨大なデータセンターを運用しており、そのうち約10カ所は米国に、残りはそれ以外の国に置かれている。これらのデータセンターは、建設された時期も違っており、「すべてのデータセンターにすべてのデータを複製することほど愚かなことはない」という方針もあって、それぞれ性格が異なっている。それでも、連続性を確保する取り組みもあるという。各データセンターは、ピークロードに合わせて設計されているため、時間帯によっては、処理能力の約50%が「余剰コンピューティング能力」として機械学習のために利用できる。

ZDNet Japan 記事を毎朝メールでまとめ読み(登録無料)

  • このエントリーをはてなブックマークに追加

この記事を読んだ方に

連載

CIO
シェアリングエコノミーの衝撃
デジタル“失敗学”
コンサルティング現場のカラクリ
Rethink Internet:インターネット再考
インシデントをもたらすヒューマンエラー
トランザクションの今昔物語
エリック松永のデジタルIQ道場
研究現場から見たAI
Fintechの正体
米ZDNet編集長Larryの独り言
大木豊成「仕事で使うアップルのトリセツ」
山本雅史「ハードから読み解くITトレンド放談」
田中克己「展望2020年のIT企業」
松岡功「一言もの申す」
松岡功「今週の明言」
内山悟志「IT部門はどこに向かうのか」
林 雅之「デジタル未来からの手紙」
谷川耕一「エンプラITならこれは知っとけ」
大河原克行「エンプラ徒然」
内製化とユーザー体験の関係
「プロジェクトマネジメント」の解き方
ITは「ひみつ道具」の夢を見る
セキュリティ
エンドポイントセキュリティの4つの「基礎」
企業セキュリティの歩き方
サイバーセキュリティ未来考
ネットワークセキュリティの要諦
セキュリティの論点
スペシャル
エンタープライズAIの隆盛
インシュアテックで変わる保険業界
顧客は勝手に育たない--MAツール導入の心得
「ひとり情シス」の本当のところ
ざっくり解決!SNS担当者お悩み相談室
生産性向上に効くビジネスITツール最前線
ざっくりわかるSNSマーケティング入門
課題解決のためのUI/UX
誰もが開発者になる時代 ~業務システム開発の現場を行く~
「Windows 10」法人導入の手引き
ソフトウェア開発パラダイムの進化
エンタープライズトレンド
10の事情
座談会@ZDNet
Dr.津田のクラウドトップガン対談
Gartner Symposium
IBM World of Watson
de:code
Sapphire Now
VMworld
Microsoft WPC
Microsoft Connect()
HPE Discover
Oracle OpenWorld
Dell Technologies World
AWS re:Invent
AWS Summit
PTC LiveWorx
吉田行男「より賢く活用するためのOSS最新動向」
古賀政純「Dockerがもたらすビジネス変革」
中国ビジネス四方山話
ベトナムでビジネス
日本株展望
企業決算
このサイトでは、利用状況の把握や広告配信などのために、Cookieなどを使用してアクセスデータを取得・利用しています。 これ以降ページを遷移した場合、Cookieなどの設定や使用に同意したことになります。
Cookieなどの設定や使用の詳細、オプトアウトについては詳細をご覧ください。
[ 閉じる ]