MIT、サイバー攻撃の85%を検知する人工知能プラットフォーム「AI Squared」を発表

Charlie Osborne (Special to ZDNet.com) 翻訳校正: 編集部 2016年04月19日 11時24分

  • このエントリーをはてなブックマークに追加

 マサチューセッツ工科大学(MIT)のコンピュータ科学および人工知能研究所(CSAIL)が米国時間4月18日に述べたところによると、「アナリスト主導のソリューション」の多くは人間の専門家が作った規則を利用するため、既定のパターンに合致しない攻撃を見逃す可能性もあるが、そうした状況を一変させる人工知能プラットフォームが新たに開発されたという。

 MITによると、「AI Squared」(AI2)と呼ばれるそのプラットフォームは、85%の攻撃を検知(現在のベンチマークの約3倍の確率)するほか、偽陽性も5分の1に減らすという。

 後者は重要である。なぜなら、誤検出によって偽陽性が誘発されると、保護システムに対する信頼性が低下するおそれがあるほか、その問題を調査しなければならないIT専門家の時間も無駄になってしまうからだ。

 AI2のテストは「ログライン」として知られる36億件ものデータを使って実施された。これらのログラインは、2000万人以上のユーザーによって3カ月の間に生成されたものだ。AIはこの情報をくまなく調べ、機械学習を用いてデータをまとめて疑わしい活動を検知した。異常と判定された活動は人間のオペレーターに提出され、フィードバックが出された。

 CSAILのリサーチサイエンティストであるKalyan Veeramachaneni氏は、「このシステムは、バーチャルアナリストとみなすことができる。AI2は新しいモデルを絶えず生成し、わずか数時間で洗練されることで、検知率を大幅かつ迅速に高めることが可能だ」と話す。

 AI2は1日に何十億件ものログラインをスキャンし、それぞれのデータが「正常」か「異常」かを評価することができる。攻撃が発生すればするほど、そして人間のオペレーターがフィードバックを返せば返すほど、AI2はより効果的になる。なぜなら、AI2は何に注意すればいいのかを学習するからだ。

 Veeramachaneni氏によると、この「カスケード」効果により、将来の攻撃予想の精度は向上し続けるという。

 MITによると、AI2は3種類の学習方法を使用して、毎日の終わりに重要なイベントを提示し、オペレーターがそれらのイベントを分類できるようにするという。その後AI2はモデルを構築し、チームが「continuous active learning system」(絶えず活発な学習システム)と呼ぶシステムを通じて洗練されていく。


この記事は海外CBS Interactive発の記事を朝日インタラクティブが日本向けに編集したものです。

  • このエントリーをはてなブックマークに追加

関連ホワイトペーパー

SpecialPR

連載

CIO
研究現場から見たAI
ITは「ひみつ道具」の夢を見る
内製化とユーザー体験の関係
米ZDNet編集長Larryの独り言
今週の明言
「プロジェクトマネジメント」の解き方
田中克己「2020年のIT企業」
松岡功「一言もの申す」
林 雅之「デジタル未来からの手紙」
谷川耕一「エンプラITならこれは知っとけ」
Fintechの正体
内山悟志「IT部門はどこに向かうのか」
情報通信技術の新しい使い方
三国大洋のスクラップブック
大河原克行のエンプラ徒然
コミュニケーション
情報系システム最適化
モバイル
通信のゆくえを追う
セキュリティ
セキュリティの論点
ネットワークセキュリティ
スペシャル
座談会@ZDNet
Dr.津田のクラウドトップガン対談
CSIRT座談会--バンダイナムコや大成建設、DeNAに聞く
創造的破壊を--次世代SIer座談会
企業決算を追う
「SD-WAN」の現在
展望2017
IBM World of Watson
de:code
Sapphire Now
VMworld
Microsoft WPC
HPE Discover
Oracle OpenWorld
Dell EMC World
AWS re:Invent
PTC LiveWorx
古賀政純「Dockerがもたらすビジネス変革」
さとうなおきの「週刊Azureなう」
誰もが開発者になる時代 ~業務システム開発の現場を行く~
中国ビジネス四方山話
より賢く活用するためのOSS最新動向
「Windows 10」法人導入の手引き
Windows Server 2003サポート終了へ秒読み
米株式動向
実践ビッグデータ
日本株展望
ベトナムでビジネス
アジアのIT
10の事情
エンタープライズトレンド
クラウドと仮想化