海外コメンタリー

Facebookの多様なサービスを支える機械学習--いかにスケールに対応しているか

John Morris (Special to ZDNET.com) 翻訳校正: 石橋啓一郎

2018-06-21 06:30

 Facebookには20億人のユーザーがいるが、その大半は、この規模のサービスが、どれだけ人工知能(AI)に依存しているかを理解していないかもしれない。ニュースフィード、検索、広告などのFacebookの製品には機械学習が使われており、顔認識や自動タグ付け、機械翻訳、音声認識、コンテンツ理解、偽アカウントや問題のあるコンテンツを見分ける異常検知など、同社のさまざまなサービスを機械学習が支えている。

 同社が発表する数字は驚くようなものばかりだ。Facebookの機械学習システムは、1日あたり合計200兆件以上の予測と、50億件を超える翻訳を処理している。また同社のアルゴリズムは、毎日数百万件の偽アカウントを自動的に削除しているという。

 FacebookのAIインフラグループ責任者Kim Hazelwood氏は、2018年の「International Symposium on Computer Architecture」(ISCA)で行った基調講演で、この規模の機械学習を扱うためのハードウェアとソフトウェアの設計について説明した。同氏は、ハードウェアやソフトウェアのアーキテクトに対して、流行を追うばかりではなく、機械学習のための「フルスタックソリューション」の開発を目指すべきだと述べた。「誰もがやっていることを追いかけるだけでなく、適切な問題を解決することが非常に大切だ」とHazelwood氏は述べた。

 FacebookのAIインフラでは、さまざまなワークロードを扱う必要がある。モデルの中には、数分でトレーニングできるものもあれば、数日から数週間かかるものもある。例えば、ニュースフィードや広告には、ほかのアルゴリズムと比べ最大で100倍のコンピューティング資源を必要とする。このため、同社では可能な限り「従来の保守的な機械学習」を使用し、深層学習(多層パーセプトロン(MLP)、畳み込みニューラルネットワーク(CNN)、再帰型ニューラルネットワーク(RNN/LSTM))は絶対に必要な場合にしか使用しないという。

 同社のAIエコシステムには、3つの主要なコンポーネントが含まれている。その3つとは、インフラ、その上で実行されるワークフロー管理ソフトウェア、そして「PyTorch」のような核となる機械学習フレームワークだ。

 Facebookは2010年頃以降、自社のデータセンターとサーバを社内で設計している。現在では、十数カ所の巨大なデータセンターを運用しており、そのうち約10カ所は米国に、残りはそれ以外の国に置かれている。これらのデータセンターは、建設された時期も違っており、「すべてのデータセンターにすべてのデータを複製することほど愚かなことはない」という方針もあって、それぞれ性格が異なっている。それでも、連続性を確保する取り組みもあるという。各データセンターは、ピークロードに合わせて設計されているため、時間帯によっては、処理能力の約50%が「余剰コンピューティング能力」として機械学習のために利用できる。

ZDNET Japan 記事を毎朝メールでまとめ読み(登録無料)

ホワイトペーパー

新着

ランキング

  1. 運用管理

    メールアラートは廃止すべき時が来た! IT運用担当者がゆとりを取り戻す5つの方法

  2. ビジネスアプリケーション

    新規アポ率が従来の20倍になった、中小企業のDX奮闘記--ツール活用と効率化がカギ

  3. ビジネスアプリケーション

    改めて知っておきたい、生成AI活用が期待される業務と3つのリスク

  4. セキュリティ

    AIサイバー攻撃の増加でフォーティネットが提言、高いセキュリティ意識を実現するトレーニングの重要性

  5. ビジネスアプリケーション

    カスタマーサポート業務で生成AIはどう使えるか、代表的な活用場面を解説

ZDNET Japan クイックポール

所属する組織のデータ活用状況はどの段階にありますか?

NEWSLETTERS

エンタープライズコンピューティングの最前線を配信

ZDNET Japanは、CIOとITマネージャーを対象に、ビジネス課題の解決とITを活用した新たな価値創造を支援します。
ITビジネス全般については、CNET Japanをご覧ください。

このサイトでは、利用状況の把握や広告配信などのために、Cookieなどを使用してアクセスデータを取得・利用しています。 これ以降ページを遷移した場合、Cookieなどの設定や使用に同意したことになります。
Cookieなどの設定や使用の詳細、オプトアウトについては詳細をご覧ください。
[ 閉じる ]