東大、AWSによるビッグデータ解析で都市の人の流れを可視化 - (page 2)

大西高弘 (NO BUDGET) 怒賀新也 (編集部)

2012-06-01 12:00

ビッグデータを加工して「人の流れデータ」を

 「人の流れプロジェクト」では、代表的なものとして、国や地方自治体で行ったパーソントリップ調査などで得られたデータを使っている。例えば、首都圏でいえば70万~80万人分の1日の活動情報などである。もともとの調査データは、被験者に配布された、朝、家を出てから、自宅に戻るまでの移動に関する調査票の記述などだ。したがって、このままでは自宅、学校や会社、昼食の場所といった地点や通過時刻の情報と、それぞれの移動手段の情報しかないことになる。

 この情報を動線のデータにするには、調査元から許諾を得た上で元データを加工する必要がある。徒歩や交通手段の記述データと地点ごとの緯度、経度情報を合わせ、時間経過に伴う動線をデータ化するわけだ。

人の動きを解析し、地図上で全体像を把握する
人の動きを解析し、地図上で全体像を把握する

 こうした膨大なデータの加工を素早く実行するアルゴリズムを作り出すといったこと、そして、そのアルゴリズムを活用した、使いやすいプラットフォームをいかに構築するかが、関本氏を中心とした研究チームの主要な仕事の1つとなる。  

研究者がすぐに利用できるサービス

 関本氏によれば、数十万、数百万人単位のデータは内容にもよるが、数ギガから数十ギガにもなり、動線データへの加工は、場合によっては数カ月から1年近くもかかっていた。関本氏のチームでは、一般に市販されているサーバ数台を使ってこの作業を行っていた。

 「データ処理に関わるアルゴリズムの開発研究をするのに、1つの作業に長い時間がかかっていては、色々と試行錯誤ができず、研究スピードはいつまでたっても上がりません。そこで2010年ころ、Amazon Web Services(以下、AWS)でAmazon EC2(Amazon Elastic Compute Cloud)を活用してみようということになりました。メモリは4ギガでCPUはノーマルクラスのサーバを数十台という構成で試してみました」(関本氏)

 すると、これまで1年近くかかると思われていたデータ加工が、ほんの数日で完了した。もちろん、これまで使っていた既存のマシンの能力から換算して、スピード向上は予測できてはいたが、関本氏が注目したのは、利用の簡便さだ。

 「分散処理用に想定した必要分のインスタンスをEC2に作成して利用していますが、データサイズが非常に大きい場合などは、Amazon S3(Amazon Simple Storage Service)を経由して受け渡すこともあります。必ずしも分散処理特有の技術を知らなくても、EC2で利用できる仮想OSイメージである「Amazon Machine Image(AMI)」をコピーし、スケールできることが最低限分かっていれば、学生でもスムーズに利用できます」

ZDNET Japan 記事を毎朝メールでまとめ読み(登録無料)

ホワイトペーパー

新着

ランキング

  1. ビジネスアプリケーション

    生成 AI 「Gemini」活用メリット、職種別・役職別のプロンプトも一挙に紹介

  2. セキュリティ

    まずは“交渉術”を磨くこと!情報セキュリティ担当者の使命を果たすための必須事項とは

  3. ビジネスアプリケーション

    急速に進むIT運用におけるAI・生成AIの活用--実態調査から見るユーザー企業の課題と将来展望

  4. クラウドコンピューティング

    Snowflakeを例に徹底解説!迅速&柔軟な企業経営に欠かせない、データ統合基盤活用のポイント

  5. ビジネスアプリケーション

    AI活用の上手い下手がビジネスを左右する!データ&AIが生み出す新しい顧客体験へ

ZDNET Japan クイックポール

所属する組織のデータ活用状況はどの段階にありますか?

NEWSLETTERS

エンタープライズコンピューティングの最前線を配信

ZDNET Japanは、CIOとITマネージャーを対象に、ビジネス課題の解決とITを活用した新たな価値創造を支援します。
ITビジネス全般については、CNET Japanをご覧ください。

このサイトでは、利用状況の把握や広告配信などのために、Cookieなどを使用してアクセスデータを取得・利用しています。 これ以降ページを遷移した場合、Cookieなどの設定や使用に同意したことになります。
Cookieなどの設定や使用の詳細、オプトアウトについては詳細をご覧ください。
[ 閉じる ]