AIで糖尿病患者の「受診中断」を予測--7割の精度

NO BUDGET 2017年02月08日 12時15分

  • このエントリーをはてなブックマークに追加

 NTTは2月3日、東京大学大学院医学系研究科医療情報学分野の研究グループと共同で、糖尿病患者の「受診中断」を予測するモデルを構築したと発表した。NTTは世界初だとしている。

 同モデルでの予測結果をもとに、受診中断を避けるために積極的に支援すべき患者の絞りこみや、支援を開始すべき時期の見極め、支援の度合いの調整が可能になる。電子カルテデータやそこから生成された特徴量を入力することで、予約不履行(受診が途絶えるきっかけとなり得る予約外来の不受診)と受診中断リスク順位(将来の受診中断日までの日数の長さによる患者の順位付け)の2つを予測する。


予測モデル概要図

 また、このモデルは、電子カルテデータの標準規格である「SS-MIX2」標準化ストレージに準拠しているので、他の病院に展開できる。対象データの規模拡大によって、より精緻な予測モデル構築が期待できるため、2017年度から複数病院データベースでの受診中断リスク予測の評価試験を開始する。

 「受診中断」は、糖尿病患者の症状が悪化する原因の1つとされる患者行動。今回のモデル構築では、約900人の糖尿病患者の電子カルテデータが利用され、NTTがこれまで培ってきたAI技術「corevo」における機械学習に関する知見が活用された。

 2011年から2014年にかけて東京大学医学部附属病院で評価したところ、受診中断を7割の精度で予測できることが確認された。なおこの研究は東京大学大学院医学系研究科・医学部倫理委員会の承認を得て実施されている。

 また、同附属病院での評価では、新たに予約登録日や予約日の曜日、予約登録日と予約日の間隔など、これまで医師が気づかなかった患者の予約行動に関わる項目が予測に影響を与えていることも分かった。

 厚生労働省の調査では、2014年の糖尿病の患者数は316万人となっている。しかし、糖尿病外来患者の約1割が受診を中断し、合併症の発症後、病態が悪化してから受診を再開するというケースが多いことが問題となっている。

 受診中断者の特徴として、年齢が低いことや男性の有職者といったことが挙げられているが、受診中断には様々な要因が考えられるため、医師が積極的に支援すべき患者を個人にまで絞り込み、支援することができないという現状があった。

ZDNet Japan 記事を毎朝メールでまとめ読み(登録無料)

  • このエントリーをはてなブックマークに追加

この記事を読んだ方に

関連ホワイトペーパー

連載

CIO
IT部門の苦悩
Rethink Internet:インターネット再考
インシデントをもたらすヒューマンエラー
トランザクションの今昔物語
エリック松永のデジタルIQ道場
研究現場から見たAI
Fintechの正体
米ZDNet編集長Larryの独り言
大木豊成「仕事で使うアップルのトリセツ」
山本雅史「ハードから読み解くITトレンド放談」
田中克己「2020年のIT企業」
松岡功「一言もの申す」
松岡功「今週の明言」
内山悟志「IT部門はどこに向かうのか」
林 雅之「デジタル未来からの手紙」
谷川耕一「エンプラITならこれは知っとけ」
大河原克行「エンプラ徒然」
内製化とユーザー体験の関係
「プロジェクトマネジメント」の解き方
ITは「ひみつ道具」の夢を見る
セキュリティ
「企業セキュリティの歩き方」
「サイバーセキュリティ未来考」
「ネットワークセキュリティの要諦」
「セキュリティの論点」
スペシャル
ざっくりわかるSNSマーケティング入門
課題解決のためのUI/UX
誰もが開発者になる時代 ~業務システム開発の現場を行く~
「Windows 10」法人導入の手引き
ソフトウェア開発パラダイムの進化
エンタープライズトレンド
10の事情
座談会@ZDNet
Dr.津田のクラウドトップガン対談
Gartner Symposium
IBM World of Watson
de:code
Sapphire Now
VMworld
Microsoft WPC
Microsoft Connect()
HPE Discover
Oracle OpenWorld
Dell EMC World
AWS re:Invent
AWS Summit
PTC LiveWorx
より賢く活用するためのOSS最新動向
古賀政純「Dockerがもたらすビジネス変革」
中国ビジネス四方山話
ベトナムでビジネス
米株式動向
日本株展望
企業決算