パナソニックHD、AIモデル学習時のデータ構築コストを削減する新技術

大場みのり (編集部)

2023-05-23 15:30

 パナソニック ホールディングス(パナソニックHD)は5月23日、AIによる物体検出の精度低下を抑えながら、学習データの構築コストを半減させる技術を開発したと発表した。

 高精度なAIモデルを実現するには、データ収集とアノテーションにより大量の学習データを用意する必要があり、多大な時間とコストを要する。そのため、少数のデータでも高精度なAIモデルを実現する技術に注目が集まっている。

 その一つである「Few-shot Domain Adaptation(少数のラベル付きデータに対するドメイン適応技術)」は、あらかじめ公開されている多数のラベル付きデータ(ソースドメインのデータ)で学習したAIモデルの事前知識を、少数の現場データ(ターゲットドメインのデータ)の学習に利用することで、現場データが少数でもAIモデルを学習できる。

 しかし従来の方法では、例えばソースドメインがRGB画像(赤色、緑色、青色で表現された画像)で、ターゲットドメインが遠赤外線画像のようにデータの“見え方”が大きく異なる場合、両ドメインの知識差「ドメインギャップ」を埋めることができず、高い性能が得られないという課題があった。

 そこで同社は、ドメインギャップが大きい条件下であっても高性能な少数のラベル付きデータに対するドメイン適応技術を実現するため、複数の画像を合成するデータ拡張方法の考え方を応用した手法を開発。同手法では、画像を置き換えるだけではなく、画像に写る自動車や人といった物体の領域情報を利用して同じ種類の物体同士を置き換えることで、画像中の物体位置や存在確率なども考慮した。

 また敵対的学習により、AIモデルが両ドメイン共通の特徴で画像を認識できるようにした。敵対的学習とは、各画素のドメインの識別を行い、わざとドメインの識別を失敗するようにしてAIモデルを更新する学習方法。AIモデルはソースドメインとターゲットドメインの区別ができなくなるため、両ドメイン共通の特徴で画像を認識するようになる。その結果、ソースドメインとターゲットドメインの見え方が大きく異なる場合にも適用可能な少数のラベル付きデータに対するドメイン適応技術を実現した。

 今回開発した少数のラベル付きデータに対するドメイン適応技術は、ドメインギャップが大きい場合においても、従来の方法より圧倒的に少ない学習データで高精度にAIモデルの他現場展開を実現し、暮らしや社会の課題を解決するAI技術の社会実装を加速させる。

 学習データの取得条件をコントロールすることが難しいケースでも、短時間・低コストで高精度なAIモデルを提供するため、例えば導入先ごとに外観やカメラの位置、照明条件などセンシングの対象や状況が異なる現場系ソリューションの導入期間や、赤外線カメラなどを用いた屋外/暗所向け認識技術の開発期間を短縮することが期待される。

ZDNET Japan 記事を毎朝メールでまとめ読み(登録無料)

ホワイトペーパー

新着

ランキング

  1. セキュリティ

    ランサムウェア対策をマンガで解説、手口や被害のデータから見る脆弱性放置の危険性とは?

  2. セキュリティ

    セキュリティリーダー向けガイド--なぜ今XDRとSIEMの違いを理解することが重要なのか

  3. セキュリティ

    マンガで分かる「クラウド型WAF」の特徴と仕組み、有効活用するポイントも解説

  4. セキュリティ

    マンガで解説、「WAF」活用が脆弱性への応急処置に効果的である理由とは?

  5. クラウドコンピューティング

    生成 AI の真価を引き出すアプリケーション戦略--ユースケースから導くアプローチ

ZDNET Japan クイックポール

所属する組織のデータ活用状況はどの段階にありますか?

NEWSLETTERS

エンタープライズコンピューティングの最前線を配信

ZDNET Japanは、CIOとITマネージャーを対象に、ビジネス課題の解決とITを活用した新たな価値創造を支援します。
ITビジネス全般については、CNET Japanをご覧ください。

このサイトでは、利用状況の把握や広告配信などのために、Cookieなどを使用してアクセスデータを取得・利用しています。 これ以降ページを遷移した場合、Cookieなどの設定や使用に同意したことになります。
Cookieなどの設定や使用の詳細、オプトアウトについては詳細をご覧ください。
[ 閉じる ]