NTTコミュニケーションズ(NTT Com)は、クボタと共同で稼働中のごみ焼却施設を使ったディープラーニング(深層学習)の実証実験を実施している。焼却施設の燃焼時に発生する蒸気の量をリアルタイムに予測することで廃棄物発電の安定化を目指すもので、再生可能エネルギー創出の高度化、効率化に向けた第一歩になるとしている。
実証実験イメージ(出展:NTT Com)
廃棄物発電では、投入するごみの性質や形状により、蒸気の量が変化することに加えて、制御に関連するパラメーターが多数存在している。そのため、蒸気の量を制御することが難しく、安定的な発電ができていないのが現状だ。
今回の実証では、NTT Comが開発したAI(人工知能)解析ツール「Node-AI」を用いて予測モデルを生成し、時系列アトリビューション解析技術を使って各工程を可視化する。
その可視化された情報とクボタの知見を照合することで、約300に及ぶパラメーターの中から重要なデータを絞り込み、蒸気量の変化の傾向を捉えるための分析処理を行い、1分先のごみ焼却状況に関する予測モデルを生成した。さらに、この予測モデルを適用した予測システムを構築し、稼働中のごみ焼却施設に導入することで、運用者が常に1分先の蒸気量をリアルタイムにモニタリングできる環境を構築した。
今後、NTT Comはクボタと共同で実証の結果を踏まえ、5分先や10分先の予測モデルの生成など、より高精度な蒸気量予測を行っていく。また、デジタル上に実際の稼働環境と同様のごみ焼却施設を再現するデジタルツインなど、蒸気量の安定化制御に向けた技術開発を加速させる。