データサイエンティスト講座

分析結果を可視化するグラフ--その用途と注意点(後編)

伊藤徹郎(ALBERT) 2014年04月03日 07時30分

  • このエントリーをはてなブックマークに追加

 前編では基本的なグラフについて紹介してきました。後編で紹介する4種類のグラフは統計的な考え方も用いたグラフ表現です。

散布図

 散布図は2変数間の関係性を把握したいときに、絶大な効果を発揮する可視化方法です。縦軸と横軸にそれぞれの変数の量をとり、2軸の座標上にプロットします。つまり、一方の変数の値の増減が、もう一方の変数の値にどのように関係するのか一目でわかります。これによって、変数間の関係性が明らかになるというわけです。例えば、気温と売り上げ数量の関係性を知りたいと思った時に、下記のように散布図で可視化すると、その関係性が明らかとなります。


 上記の場合は気温が上昇すると売り上げ数量も上がっていく関係性があると見て取れます。2変数の関係性については相関係数という指標を求めて把握することも多いですが、散布図で表すと視覚的に把握することができるため、手早く実施したい場合にはおすすめな手法です。

箱ひげ図

 箱ひげ図は複数変数間のデータのばらつき具合を可視化するために用います。基本統計量の算出について以前、説明しましたが、それらを可視化するための手段として箱ひげ図はよく用いられています。MicrosoftのExcelにはテンプレートで箱ひげ図を作成できませんので、イメージはオープンソースの統計解析システム 「R」を用いた箱ひげ図を使っています。


 Rに搭載されているデータで最もよく使用されるirisデータ(あやめ)を箱ひげ図で可視化しました。setosa、versicolor、virginicaという3品種の「がく片」の長さのばらつき具合がこれで一目瞭然です。ひげの両端がそれぞれ最大値、最小値です。ひげよりも外にある点は外れ値としてプロットされています。

 箱の両端がそれぞれ第3四分位(全体を等分した際の75%)、第1四分位(全体を等分した際の25%)、箱の中の線が中央値を表していることで、観測データがどのようにばらついているか、他の変数と比較してどうちらばっているかを検討します。

ZDNet Japan 記事を毎朝メールでまとめ読み(登録無料)

  • このエントリーをはてなブックマークに追加

この記事を読んだ方に

関連ホワイトペーパー

連載

CIO
デジタル“失敗学”
コンサルティング現場のカラクリ
Rethink Internet:インターネット再考
インシデントをもたらすヒューマンエラー
トランザクションの今昔物語
エリック松永のデジタルIQ道場
研究現場から見たAI
Fintechの正体
米ZDNet編集長Larryの独り言
大木豊成「仕事で使うアップルのトリセツ」
山本雅史「ハードから読み解くITトレンド放談」
田中克己「2020年のIT企業」
松岡功「一言もの申す」
松岡功「今週の明言」
内山悟志「IT部門はどこに向かうのか」
林 雅之「デジタル未来からの手紙」
谷川耕一「エンプラITならこれは知っとけ」
大河原克行「エンプラ徒然」
内製化とユーザー体験の関係
「プロジェクトマネジメント」の解き方
ITは「ひみつ道具」の夢を見る
セキュリティ
企業セキュリティの歩き方
サイバーセキュリティ未来考
ネットワークセキュリティの要諦
セキュリティの論点
スペシャル
ざっくりわかるSNSマーケティング入門
課題解決のためのUI/UX
誰もが開発者になる時代 ~業務システム開発の現場を行く~
「Windows 10」法人導入の手引き
ソフトウェア開発パラダイムの進化
エンタープライズトレンド
10の事情
座談会@ZDNet
Dr.津田のクラウドトップガン対談
Gartner Symposium
IBM World of Watson
de:code
Sapphire Now
VMworld
Microsoft WPC
Microsoft Connect()
HPE Discover
Oracle OpenWorld
Dell EMC World
AWS re:Invent
AWS Summit
PTC LiveWorx
吉田行男「より賢く活用するためのOSS最新動向」
古賀政純「Dockerがもたらすビジネス変革」
中国ビジネス四方山話
ベトナムでビジネス
日本株展望
企業決算
このサイトでは、利用状況の把握や広告配信などのために、Cookieなどを使用してアクセスデータを取得・利用しています。 これ以降ページを遷移した場合、Cookieなどの設定や使用に同意したことになります。
Cookieなどの設定や使用の詳細、オプトアウトについては詳細をご覧ください。
[ 閉じる ]