各分野のコラボレーション進む--Appier、AIトレンドの2020年総括と2021年予測

大場みのり (編集部)

2021-01-21 09:47

 人工知能(AI)を搭載した基盤を提供するAppierは1月20日、AI活用に関する2020年の総括と2021年以降の予測について、説明会を開催した。同社のチーフAIサイエンティストに加え、台湾国立清華大学の准教授も務めるMin Sun氏が登壇した。

 2020年は新型コロナウイルス感染症の影響で、従来の5倍のスピードでDX(デジタル変革)が進んだという。Sun氏は「さまざまな分野でデジタル化が加速したことから、2021年は全ての企業が自社をIT企業として捉えるべき。テクノロジーを活用し、より多くのデータを収集し、AIを戦略的に使うことが重要である」と語った。

 同氏はまず、2020年におけるAIの進化を3つ紹介した。

 1つ目は画像認識。2012年、数百万枚もの画像をニューラルネットワークに学習させることで、人間の力を上回る画像認識が実現した。だがボトルネックとして、ラベル付きの画像を数百万枚も用意しなければならないということがあった。そこで2020年、研究者はシンプルな教師なしメソッド「SimCLR」を提案。このメソッドのもと、膨大なラベルなし画像を学習させたところ、 従来の方法とほぼ同じ精度だったという。

 SimCLRでは、画像を自動で補強する「オートオーギュメンテーション」という技術が用いられている。例えば、さまざまな犬の画像の中でAIには全身が見えなくても、頭と足の画像から「これは犬である」と推測できるようになった(図1参照)。この技術により、ローデータを収集すれば、AIは自動で学習することが可能になるという。

図1(出典:Appier) 図1(出典:Appier)
※クリックすると拡大画像が見られます

 2つ目は自然言語処理。2~3年前、言語モデルはかなり高いレベルで自己学習できると分かった。そして2020年、研究者はより大規模な言語モデル「GPT-3」を発表した。訓練にかかるコストは、500~1000万ドルに上ると言われている。GPT-3は言語モデルとして初めて1000億個を超えるパラメーターを用いており、言語の理解/生成という分野において他のモデルを大きく上回っている(図2参照)。

図2(出典:Appier) 図2(出典:Appier)
※クリックすると拡大画像が見られます

 3つ目はタンパク質フォールディング。他の分野とはかけ離れているように見えるが、タンパク質フォールディングで活用されている技術は、自然言語処理で使われているものと非常に似ているという(図3参照)。タンパク質フォールディングはアミノ酸の配列を提供し、その配列からタンパク質の形状を立体的に予測することができる。

 左側にあるのは、特に重要とされるアミノ酸20個。これらに文字を当てはめて順番に並べていくと、言語と同じような意味をなす。形状が立体的に分かることで、プロテインの機能を数値化することが可能になる。これは、創薬のスピードアップや病気の理解につながると期待される。

図3(出典:Appier) 図3(出典:Appier)
※クリックすると拡大画像が見られます

ZDNET Japan 記事を毎朝メールでまとめ読み(登録無料)

ホワイトペーパー

新着

ランキング

  1. セキュリティ

    ランサムウェア対策をマンガで解説、手口や被害のデータから見る脆弱性放置の危険性とは?

  2. セキュリティ

    セキュリティリーダー向けガイド--なぜ今XDRとSIEMの違いを理解することが重要なのか

  3. セキュリティ

    マンガで分かる「クラウド型WAF」の特徴と仕組み、有効活用するポイントも解説

  4. セキュリティ

    マンガで解説、「WAF」活用が脆弱性への応急処置に効果的である理由とは?

  5. クラウドコンピューティング

    生成 AI の真価を引き出すアプリケーション戦略--ユースケースから導くアプローチ

ZDNET Japan クイックポール

所属する組織のデータ活用状況はどの段階にありますか?

NEWSLETTERS

エンタープライズコンピューティングの最前線を配信

ZDNET Japanは、CIOとITマネージャーを対象に、ビジネス課題の解決とITを活用した新たな価値創造を支援します。
ITビジネス全般については、CNET Japanをご覧ください。

このサイトでは、利用状況の把握や広告配信などのために、Cookieなどを使用してアクセスデータを取得・利用しています。 これ以降ページを遷移した場合、Cookieなどの設定や使用に同意したことになります。
Cookieなどの設定や使用の詳細、オプトアウトについては詳細をご覧ください。
[ 閉じる ]