MS、小規模言語モデル「Phi-2」をリリース--最大25倍サイズのモデルの性能に匹敵

Sabrina Ortiz (ZDNET.com) 翻訳校正: 編集部

2023-12-15 10:37

 生成人工知能(AI)との関連で言語モデルを考えるとき、真っ先に思い浮かぶのは大規模言語モデル(LLM)だろう。「ChatGPT」「Bard」「Copilot」など、人気のチャットボットを支えているのは、こうしたLLMにほかならない。しかし、Microsoftの新しい言語モデルは、小規模言語モデル(SLM)も生成AIの分野で大きな可能性を秘めていることを示している。

Phi-2を発表するMicrosoftのCEO
提供:Microsoft

 同社は米国時間12月12日、常識的な推論と言語理解が可能なSLMの「Phi-2」を発表した。現在、「Azure AI Studio」のモデルカタログで利用可能となっている。

 「小規模」という言葉に惑わされてはいけない。Phi-2は27億個のパラメーターを持ち、その数は「Phi-1.5」の13億個から飛躍的に増加している。

 同社によると、Phi-2はパラメーターが130億個以下の言語モデルの中で「最先端の性能」を発揮し、複雑なベンチマークでは最大25倍の言語モデルを上回ったという。

 下図が示すように、Phi-2は、Metaの「Llama-2」やMistral AIの「Mistral」に加え、Googleが提供する高性能LLMの最小バージョンである「Gemini Nano 2」さえも、いくつかのベンチマークで凌駕した。

Phi-2の性能評価
提供:Microsoft

 MicrosoftはPhiの開発において、より大規模な言語モデルに匹敵する性能と新たな機能を持つSLMを目指しており、この性能結果はその目標と一致している。

 同社はPhi-2のトレーニングにあたり、データを厳選し、まず「教科書品質」のデータを用いたという。その後、学習するに値するかどうかとコンテンツの品質をもとに精選したウェブデータを追加し、言語モデルのデータベースを増強した。

 同社がSLMに注力しているのはなぜだろう。それは、LLMに対するコスト効率の優れた代替となるからだ。SLMはLLMほどのパワーを必要としないタスクで役立つ。LLMよりはるかに少ない計算能力で実行できるため、データの処理要件を満たすために高額なGPUへ投資する必要がなくなる。

この記事は海外Red Ventures発の記事を朝日インタラクティブが日本向けに編集したものです。

ZDNET Japan 記事を毎朝メールでまとめ読み(登録無料)

ホワイトペーパー

新着

ランキング

  1. セキュリティ

    AIサイバー攻撃の増加でフォーティネットが提言、高いセキュリティ意識を実現するトレーニングの重要性

  2. セキュリティ

    最も警戒すべきセキュリティ脅威「ランサムウェア」対策として知っておくべきこと

  3. 運用管理

    メールアラートは廃止すべき時が来た! IT運用担当者がゆとりを取り戻す5つの方法

  4. セキュリティ

    「どこから手を付ければよいかわからない」が約半数--セキュリティ運用の自動化導入に向けた実践ガイド

  5. セキュリティ

    クラウド資産を守るための最新の施策、クラウドストライクが提示するチェックリスト

ZDNET Japan クイックポール

所属する組織のデータ活用状況はどの段階にありますか?

NEWSLETTERS

エンタープライズコンピューティングの最前線を配信

ZDNET Japanは、CIOとITマネージャーを対象に、ビジネス課題の解決とITを活用した新たな価値創造を支援します。
ITビジネス全般については、CNET Japanをご覧ください。

このサイトでは、利用状況の把握や広告配信などのために、Cookieなどを使用してアクセスデータを取得・利用しています。 これ以降ページを遷移した場合、Cookieなどの設定や使用に同意したことになります。
Cookieなどの設定や使用の詳細、オプトアウトについては詳細をご覧ください。
[ 閉じる ]