グラフ構造のデータを高速検索するグラフ型データベース「Neo4j」の勘所

長瀬嘉秀 (Neo4jユーザーグループ) 案浦浩二 (Neo4jユーザーグループ) 2015年04月20日 16時30分

  • このエントリーをはてなブックマークに追加

グラフ型データベースとは

 グラフ型データベースとは、グラフ構造を持ったデータベースで、データの構造が従来のリレーショナルでなく、ネットワーク状になっている場合に、検索などの機能で効力を発揮いたします。

 例えば、ネットワークシステムを考えた時に、ネットワーク装置とネットワークのケーブルで構成されています。どの装置に、何本かのケーブルがつながれていて、さらにその先に装置がつながれているということを管理します。

 ネットワークには、膨大な装置やネットワークケーブルがつながれていて、これを従来のデータベースで管理するのは困難です。さらに、どこかの装置が故障した時に、ネットワークは別のルートを探さなければならないかもしれません。

 このようなデータ管理には、グラフ型データベースが得意とするところです。もちろん、装置などの数は数千万に及ぶので、従来のデータベースでは、検索スピードなどを考えると構築は難しいでしょう。

 他には、地図上で道と交差点があり、ある地点から目的地までの最短距離を探すときにも、このグラフ型データベースが有効です。工事中で道が通れなかったり、交通渋滞で遅延を考慮したりするなど、かなり複雑な計算を要します。

 このような構造はグラフ理論として、数学では扱われています。今までは、グラフ理論を手軽に実装できる環境がありませんでしたが、NoSQLなどデータベース製品の台頭でようやく手に入れることができるようになりました。

グラフの仕組み

 グラフ構造はどのような要素で構成されているかを説明していきます。グラフの基本的な要素は、ノードとコネクションです。コネクションというのは、ノード間をつなぐリレーションになります。

 ネットワークシステムでは、装置がノードになり、ケーブルがリレーションです。もちろん、物理的な意味ではなく、装置が持つ情報、ケーブルに相当するノードをつなぐ情報がそれぞれノードとリレーションになるわけです。

図1:グラフ型データベースの基本要素
図1:グラフ型データベースの基本要素

 ノードとリレーションは数千万にのぼり、膨大な情報量になります。この情報をグラフ型データベースは瞬時に検索できるのです。さらに、リレーショナルデータベース(RDB)のJoinに似たようなクエリを用意して、検索処理を記述します。クエリは複雑な検索もできるように設計されています。

 グラフ型データベースの設計では、データモデリングのER図やオブジェクトモデルのUMLとの共通点もあり、従来のデータベース設計者にとって、入りやすい側面を持っています。グラフのノードはエンティティであり、ノードには属性をプロパティとして定義できます。よって、従来のデータモデルのエンティティがノードに、関連がリレーションになったりするわけです。グラフ型データベースの基本要素を図1に表します。

インスタンスモデル

 グラフ型データベースを設計する上で、重要なのがインスタンスモデルです。インスタンスモデルとは、具体的なインスタンス(値を持ったオブジェクト)で考えていくことです。

 データモデルやオブジェクトモデルでは、インスタンスを考えず、いきなり抽象概念でモデリングすることが多いのですが、グラフ型では、インスタンスモデルを頻繁に考えていきます。開発プロセス的にみると、抽象概念から落としていくのが従来からのウォーターフォールで、インスタンスから考えるのは、テスト駆動開発を行うアジャイル開発のようなものです。それでは、具体的なインスタンスモデルを見てみましょう。

図2:インスタンスモデル
図2:インスタンスモデル

 この例は映画と出演者、監督、レビューアなどの関係を示したデータベースです。内容は、Neo4jの命名の由来でもある『The Matrix(邦題:マトリックス)』という映画の中の登場人物をモデル化しています。

 ノードになっているのは、登場人物です。そして、リレーションには、関連名や期間などがプロパティとして設定されています。例えば、Neoとして知られる主人公は、名前としてKeanu Reeves、年齢は29歳です。そして、次のノードであるTrinityとの関係はLOVESで3日です。このように、実際の値を入れて作成してくのがインスタンスモデルです。

 この程度のノード数であれば、人が見ても探せますが、これが数千万という数になってしまうと、コンピュータのデータベースシステムでないと対応できません。

ZDNet Japan 記事を毎朝メールでまとめ読み(登録無料)

  • このエントリーをはてなブックマークに追加

この記事を読んだ方に

関連ホワイトペーパー

連載

CIO
シェアリングエコノミーの衝撃
デジタル“失敗学”
コンサルティング現場のカラクリ
Rethink Internet:インターネット再考
インシデントをもたらすヒューマンエラー
トランザクションの今昔物語
エリック松永のデジタルIQ道場
研究現場から見たAI
Fintechの正体
米ZDNet編集長Larryの独り言
大木豊成「仕事で使うアップルのトリセツ」
山本雅史「ハードから読み解くITトレンド放談」
田中克己「展望2020年のIT企業」
松岡功「一言もの申す」
松岡功「今週の明言」
内山悟志「IT部門はどこに向かうのか」
林 雅之「デジタル未来からの手紙」
谷川耕一「エンプラITならこれは知っとけ」
大河原克行「エンプラ徒然」
内製化とユーザー体験の関係
「プロジェクトマネジメント」の解き方
ITは「ひみつ道具」の夢を見る
セキュリティ
エンドポイントセキュリティの4つの「基礎」
企業セキュリティの歩き方
サイバーセキュリティ未来考
ネットワークセキュリティの要諦
セキュリティの論点
スペシャル
エンタープライズAIの隆盛
インシュアテックで変わる保険業界
顧客は勝手に育たない--MAツール導入の心得
「ひとり情シス」の本当のところ
ざっくり解決!SNS担当者お悩み相談室
生産性向上に効くビジネスITツール最前線
ざっくりわかるSNSマーケティング入門
課題解決のためのUI/UX
誰もが開発者になる時代 ~業務システム開発の現場を行く~
「Windows 10」法人導入の手引き
ソフトウェア開発パラダイムの進化
エンタープライズトレンド
10の事情
座談会@ZDNet
Dr.津田のクラウドトップガン対談
Gartner Symposium
IBM World of Watson
de:code
Sapphire Now
VMworld
Microsoft WPC
Microsoft Connect()
HPE Discover
Oracle OpenWorld
Dell Technologies World
AWS re:Invent
AWS Summit
PTC LiveWorx
吉田行男「より賢く活用するためのOSS最新動向」
古賀政純「Dockerがもたらすビジネス変革」
中国ビジネス四方山話
ベトナムでビジネス
日本株展望
企業決算
このサイトでは、利用状況の把握や広告配信などのために、Cookieなどを使用してアクセスデータを取得・利用しています。 これ以降ページを遷移した場合、Cookieなどの設定や使用に同意したことになります。
Cookieなどの設定や使用の詳細、オプトアウトについては詳細をご覧ください。
[ 閉じる ]