情シスから始まるデータ分析

情シスから始まるデータ分析--価値を引き出すチーム作り

中原誠 2015年07月14日 07時00分

  • このエントリーをはてなブックマークに追加

 昨今、データを活用したビジネス応用事例を多く目にするようになった。筆者もデータアナリストとして活動するなかで、データ活用のニーズの多さを実感している。一方で、データは存在するが活用ができていない、という状態の企業もまだまだ多い。分析のための組織を作った、作りたいがチームビルディングの進め方が分からないという声も耳にする。

 本連載は、現在情報システム部門で業務をされている方に、データ分析組織を構築する上での注意点を解説したい。

 第1回は、情シスとデータ分析の親和性に触れ、マーケティング部門と連携ができるようになることをゴールにし、そのメリットや、心がけるべきことなどについて触れていく。

情シスはデータ分析を実施する最適な部署

 まず、情シスが、なぜデータ分析に適しているのか、を論じたい。それは、MySQLなどを用いたデータ操作に対して明るい点が大きい。

 「それだけで?」と思われた読者もいるかもしれない。実は、データ分析に費やされる時間の8割は前処理(データの加工やクリーニング)、と言われている。つまりスピーディにデータ分析ができるかどうかは、データの操作スキルに大きく依存する。当然データの操作スキルに長けている情シスがデータ分析を行うのに適しているということになる。

 あとは、何を分析するかを決めれば、すぐにでもデータを分析できる。しかし、これが案外難しい。なぜなら、その答えが情シス内にはないことが多いからだ。

 ここでひとつ、分析の事例を見てみよう。

 A社は、ハガキによるダイレクトメール(DM)配信による顧客アプローチの費用対効果が悪いと感じていた。

 顧客行動の分析により、DM配信先のターゲットを最適化した。

 結果、DMの効果は落とさずコストダウンを成功させ、費用対効果を改善できた。

 この事例では、「DMの費用対効果が悪い」が課題として挙げられ、その課題を解決することが分析の目的になっており、分析者にとって課題が明確で分析しやすいといえる。

 このような課題は情シス内に閉じていては発見できない。必然的に他部門に目を向け、データ分析で解決できる課題を認識する必要が出てくる。

 「情シスがデータ分析をできる」ようになる第一歩として、他部門と連携し、そこで顕在化している課題の解決を分析の目的にすることをお勧めしたい。


現状とあるべき姿を比較することがデータ分析の第一歩
  • このエントリーをはてなブックマークに追加

関連ホワイトペーパー

SpecialPR

連載

CIO
研究現場から見たAI
ITは「ひみつ道具」の夢を見る
内製化とユーザー体験の関係
米ZDNet編集長Larryの独り言
今週の明言
「プロジェクトマネジメント」の解き方
田中克己「2020年のIT企業」
松岡功「一言もの申す」
林 雅之「デジタル未来からの手紙」
谷川耕一「エンプラITならこれは知っとけ」
Fintechの正体
内山悟志「IT部門はどこに向かうのか」
情報通信技術の新しい使い方
三国大洋のスクラップブック
大河原克行のエンプラ徒然
コミュニケーション
情報系システム最適化
モバイル
通信のゆくえを追う
セキュリティ
サイバーセキュリティ未来考
セキュリティの論点
ネットワークセキュリティ
スペシャル
Gartner Symposium
企業決算
ソフトウェア開発パラダイムの進化
座談会@ZDNet
Dr.津田のクラウドトップガン対談
CSIRT座談会--バンダイナムコや大成建設、DeNAに聞く
創造的破壊を--次世代SIer座談会
「SD-WAN」の現在
展望2017
IBM World of Watson
de:code
Sapphire Now
VMworld
Microsoft WPC
HPE Discover
Oracle OpenWorld
Dell EMC World
AWS re:Invent
PTC LiveWorx
古賀政純「Dockerがもたらすビジネス変革」
さとうなおきの「週刊Azureなう」
誰もが開発者になる時代 ~業務システム開発の現場を行く~
中国ビジネス四方山話
より賢く活用するためのOSS最新動向
「Windows 10」法人導入の手引き
Windows Server 2003サポート終了へ秒読み
米株式動向
実践ビッグデータ
日本株展望
ベトナムでビジネス
アジアのIT
10の事情
エンタープライズトレンド
クラウドと仮想化