データ管理からデータ分析へ、“NewSQL”を標ぼうする米Teradata

日川佳三 2018年06月15日 07時00分

  • このエントリーをはてなブックマークに追加

 「データ管理基盤の会社からデータ分析基盤の会社になった。米Teradataは、数年前に戦略を変えた。2017年10月からは、データベースにデータ分析エンジンを統合したブランドとしてTeradata Analytics Platformをうたっている」。

米TeradataでCTO(最高技術責任者)を務めるStephen A.Brobst氏
米TeradataでCTO(最高技術責任者)を務めるStephen A.Brobst氏

 米Teradataは、DWH(データウエアハウス)用途に向いたデータベース管理システム(DBMS)として、「Teradata Database」を提供してきたベンダーだ。ここ数年は、データの管理に加えて、データの分析機能に注力してきた。DBMSにデータ分析エンジンを組み合わせて提供している。

 データ分析機能への注力は、米Teradataの戦略の変化を受けたもの。SQLで構造化データを管理するだけでなく、機械学習ライブラリによるデータ分析なども取り込む。直近の2018年5月には、時系列の変化を考慮した分析ができる“4次元分析”機能を取り入れた。

 日本市場でも新ブランドを浸透させる。2018年5月23日に東京で開催したプライベートイベント「Teradata Universe Tokyo 2018」の場で、Teradata Analytics Platformのブランド名を発表した。

SQLのデータ管理とNoSQLのデータ分析を統合したNewSQL

 「SQLをベースにNoSQLの要素を取り入れた。これを“NewSQL”と呼んでいる」。米TeradataでCTO(最高技術責任者)を務めるStephen A.Brobst氏は、米Teradataがデータ分析機能を取り込む姿勢を、こう表現する。

 「以前は、SQL派とNoSQL派との間で戦いがあった。互いに自分たちが優れているとして争っていた。SQL派とNoSQL派は、どちらも正しくて、どちらも間違っている。米Teradataは、SQLとNoSQLのいいとこ取りをした」(Stephen氏)

 実際の取り組みとして、DBMSの周りに、データ分析の仕組みを構築した。R、Ruby、Python、Perlなどの言語も取り入れた。金融商品の属性を理解したり、ウェブログを分析したりする用途に向けて半構造型のデータを扱えるように、JSONやKVSオブジェクトなどのデータ形式もネイティブで取り込んだ。

機械学習など各種のデータ分析エンジンを取り込める

 Teradata Analytics Platformでは、ソフトウエアとして実装したコプロセッサ(データ分析エンジン)が、DBMSエンジンと共存している。DBMSを中心に、データ分析エンジンをAPIベースで自由に組み合わせて使えるようにしている。

 ある特定のデータ分析エンジンにロックインされないことも重視した。「AI(人工知能)のデータ分析は急速に進化している。陳腐化する可能性がある」(Stephen氏)からだ。Teradata Analytics Platformは、新しい技術やアルゴリズムが出てきた時に、これをプラグインして使い始められる。

 利用できるデータ分析エンジンの例に、米Teradataが買収した米Aster Data Systemsの機械学習ライブラリがある。グラフ分析のエンジンも新たに開発した。金融業における資金洗浄の検知や、レコメンデーションなどに利用できる。

 オープンソース(OSS)のデータ分析エンジンも積極的に組み込む。例えば、データを高速に分散処理する基盤ソフトのApache Sparkを搭載した。米Googleが提供している機械学習ライブラリのTensorFlowも取り込む予定だ。「優秀なエンジンが出てきたら、どんどん取り込んでいく」(Stephen氏)

分析対象のデータを、データ分析エンジンへと適切に配備する

 Teradata Analytics Platformは、単にDBMSとデータ分析エンジンを組み合わせただけの製品ではない。「オーケストレーション機能、すなわち、データが必要な時に必要なところに置かれるようにする機能を持つ」とStephen氏は説明する。

 データを分析する際には、DBMSやHadoop、Amazon S3などからデータを取ってきて、分析エンジンに渡す。Teradata Analytics Platformのオーケストレーション機能を使えば、データを重複させることなく取ってこられる。「データ分析エンジンとデータとの統制を図っている」(Stephen氏)

 かつては、データ分析者が自ら、Teradata Databaseなどからデータを取り出し、Hadoopなどのデータ分析エンジンに入れて処理し、またDBMSに戻すといった作業をやっていた。「時間もかかるし、データも重複してしまう。こうした問題を解消した」(Stephen氏)

 データ分析エンジンとデータの統制を図ることのメリットは、複数のジャンルの分析を効率かつ効果的に行えること。例えば、同じデータを使って、浅層学習と深層学習といった異なるエンジンで分析する、といった統制ができる。

 実際に、最先端のユーザーは、複数のアルゴリズムを使って深層学習や浅層学習などを使い分けている。例えば、個人に的を絞ったレコメンドに深層学習を活用し、広く一般的なレコメンドには従来型の手法を使う。

ZDNet Japan 記事を毎朝メールでまとめ読み(登録無料)

  • このエントリーをはてなブックマークに追加

この記事を読んだ方に

関連ホワイトペーパー

連載

CIO
シェアリングエコノミーの衝撃
デジタル“失敗学”
コンサルティング現場のカラクリ
Rethink Internet:インターネット再考
インシデントをもたらすヒューマンエラー
トランザクションの今昔物語
エリック松永のデジタルIQ道場
研究現場から見たAI
Fintechの正体
米ZDNet編集長Larryの独り言
大木豊成「仕事で使うアップルのトリセツ」
山本雅史「ハードから読み解くITトレンド放談」
田中克己「展望2020年のIT企業」
松岡功「一言もの申す」
松岡功「今週の明言」
内山悟志「IT部門はどこに向かうのか」
林 雅之「デジタル未来からの手紙」
谷川耕一「エンプラITならこれは知っとけ」
大河原克行「エンプラ徒然」
内製化とユーザー体験の関係
「プロジェクトマネジメント」の解き方
ITは「ひみつ道具」の夢を見る
セキュリティ
エンドポイントセキュリティの4つの「基礎」
企業セキュリティの歩き方
サイバーセキュリティ未来考
ネットワークセキュリティの要諦
セキュリティの論点
スペシャル
エンタープライズAIの隆盛
インシュアテックで変わる保険業界
顧客は勝手に育たない--MAツール導入の心得
「ひとり情シス」の本当のところ
ざっくり解決!SNS担当者お悩み相談室
生産性向上に効くビジネスITツール最前線
ざっくりわかるSNSマーケティング入門
課題解決のためのUI/UX
誰もが開発者になる時代 ~業務システム開発の現場を行く~
「Windows 10」法人導入の手引き
ソフトウェア開発パラダイムの進化
エンタープライズトレンド
10の事情
座談会@ZDNet
Dr.津田のクラウドトップガン対談
Gartner Symposium
IBM World of Watson
de:code
Sapphire Now
VMworld
Microsoft WPC
Microsoft Connect()
HPE Discover
Oracle OpenWorld
Dell Technologies World
AWS re:Invent
AWS Summit
PTC LiveWorx
吉田行男「より賢く活用するためのOSS最新動向」
古賀政純「Dockerがもたらすビジネス変革」
中国ビジネス四方山話
ベトナムでビジネス
日本株展望
企業決算
このサイトでは、利用状況の把握や広告配信などのために、Cookieなどを使用してアクセスデータを取得・利用しています。 これ以降ページを遷移した場合、Cookieなどの設定や使用に同意したことになります。
Cookieなどの設定や使用の詳細、オプトアウトについては詳細をご覧ください。
[ 閉じる ]