事業会社で取り組むデータ分析の実際

リクルートはどのようにしてデータ分析に取り組んでいるのか--理想と現実 - (page 2)

伊藤徹郎 2017年02月24日 07時00分

  • このエントリーをはてなブックマークに追加
  • 印刷

--インフラ部門やIT部門、マーケティング部門などとはどのように連携していますか。

 われわれの部署にはデータプランナー、機械学習エンジニアのほかにアプリエンジニア、インフラエンジニアが所属しています。そのため、部門内でたいていの問題は処理できています。

 役割をバレーボールで例えてみましょうか。まず、事業課題をデータプランナーがレシーブします。そこに機械学習エンジニアが分析モデルとコードでトスを上げます。そこでアプリエンジニアが開発しているAPI基盤がスパイクします。インフラエンジニアは共通基盤を作っているので、これらの環境を維持しています。このようなチームプレーでビジネス部門と業務連携をしています。

--分析モデルの改善サイクルはどのように回していますか。

 すべての施策にA/Bテストを導入しています。A/Bテストで勝った計算モデルが生き残り、サービスに組み込まれます。常にいろいろなA/Bテストが走っているので、組み込む際は問題ないのですが、組み込んだ後に適宜見直すことは課題ですね。

--学習に用いるデータの肥大化などは問題ないですか。

 それほど困っていないです。会社の方針としてシステム投資をかなりしているためかもしれません。分散学習(分散並列環境で機械学習)をしているので、パフォーマンスが悪い際はインスタンスを追加して解決しています。使わせてもらっている予算規模から考えるに、経営層からの期待が大きいと感じています。

 また、ユーザー単位や商品単位で予測する関係上、レコード数も極端に多くなることなく適度な数に収まっています。あとはモデルを適用する際の(深層学習の際の)特徴量選択を厳選しているので、肥大化していないことも理由です。

--所属されている組織のデータ活用度合いを点数化するとしたら100点満点中何点でしょうか。

 なかなか難しいですね。私の理想から採点してみると70点くらいかなと思います。

 周りのメンバーも優秀なメンバーが多く、その点に関してはまったく問題はありません。基本的な改善サイクルを1~2週間で回しているのですが、ケースによってはそれよりも遅い場合もあり、ここは改善ポイントですね。

 あとは基本的に1~2週間単位でのサイクルなので季節要因による変動などの長期的な視点での改善についてはまだ余地があると思っています。あとは稼働している機械学習の性能の劣化をきちんと定量化することができていないので、ここも改善していきたいですね。期待も込めて30点は成長余地という採点です。

ZDNet Japan 記事を毎朝メールでまとめ読み(登録無料)

  • このエントリーをはてなブックマークに追加

SpecialPR

連載

CIO
“真FinTech” 地域金融の行方
教育IT“本格始動”
月刊 Windows 10移行の心・技・体
ITアナリストが知る日本企業の「ITの盲点」
シェアリングエコノミーの衝撃
デジタル“失敗学”
コンサルティング現場のカラクリ
Rethink Internet:インターネット再考
インシデントをもたらすヒューマンエラー
エリック松永のデジタルIQ道場
研究現場から見たAI
Fintechの正体
米ZDNet編集長Larryの独り言
大木豊成「仕事で使うアップルのトリセツ」
山本雅史「ハードから読み解くITトレンド放談」
田中克己「展望2020年のIT企業」
松岡功「一言もの申す」
松岡功「今週の明言」
内山悟志「IT部門はどこに向かうのか」
林雅之「デジタル未来からの手紙」
谷川耕一「エンプラITならこれは知っとけ」
内製化とユーザー体験の関係
「プロジェクトマネジメント」の解き方
セキュリティ
セキュリティインシデント対応の現場
エンドポイントセキュリティの4つの「基礎」
企業セキュリティの歩き方
サイバーセキュリティ未来考
ネットワークセキュリティの要諦
スペシャル
デジタル時代を支える顧客接点改革
エンタープライズAIの隆盛
インシュアテックで変わる保険業界
顧客は勝手に育たない--MAツール導入の心得
「ひとり情シス」の本当のところ
ざっくり解決!SNS担当者お悩み相談室
生産性向上に効くビジネスITツール最前線
ざっくりわかるSNSマーケティング入門
課題解決のためのUI/UX
エンタープライズトレンドの読み方
10の事情
座談会@ZDNet
吉田行男「より賢く活用するためのOSS最新動向」
古賀政純「Dockerがもたらすビジネス変革」
中国ビジネス四方山話
ベトナムでビジネス
日本株展望
企業決算
このサイトでは、利用状況の把握や広告配信などのために、Cookieなどを使用してアクセスデータを取得・利用しています。 これ以降ページを遷移した場合、Cookieなどの設定や使用に同意したことになります。
Cookieなどの設定や使用の詳細、オプトアウトについては詳細をご覧ください。
[ 閉じる ]