上司に「AIをやれ」といわれたら--機械学習プロジェクトで成果を出すために(前編)

田中耕太郎 2017年04月03日 07時00分

  • このエントリーをはてなブックマークに追加

 機械学習などAIテクノロジやデータ分析・データ活用が有効な分野といえば、主にインターネットで事業を展開している企業に限定された話だと思っている方も多いかもしれません。

 事実、これらの技術を活用するには大量のデータが必要となり、IT技術をフル活用するインターネット系の業界で先行して発達してきました。

 しかし、AIや機械学習の波は、どのような業界にも押し寄せています。多くの企業は既にデータウェアハウスやデータマートの整備を進めており、販売データやマーケティングデータなど、デジタル化しやすいものから活用を始めています。

 2017年はIoTの進展により、これまで保管や利用が十分でなかったアナログデータのデジタル化と活用の取り組みが一段と進むでしょう。


 また、昨今の事業環境は非常に速いスピードで移り変わるため、高速にPDCAを回していくことが求められます。

 こうして、まさに「デジタル化 × 高速PDCA」を実現する手段として、AIによる自動判断や自己学習によるリアルタイムでの精度向上がビジネスの現場で活用されるようになっています。

 AIに関する技術は重要ですが、その開発は専門家でない人にとってはまだハードルが高いことも事実です。その上、専門家の数も限られ、そう簡単に必要な人材の採用ができるとは限りません。

 そのため、本稿では「機械学習をビジネスに活用するためにはどうしたらいいか」という疑問を、より現実的な解を用いて考えていきたいと思います。初めての機械学習プロジェクトを立ち上げ、成功させる一助になれば幸いです。

ビジネス課題と解決方法の明確化

 一般的なプロジェクトの例にもれず、機械学習の活用についても「ビジネス上の課題」を考えることから始めます。課題を解決する手段として機械学習の活用が最良ということであれば、プロジェクトとして立ち上げます。

 肝心なことは、AIや機械学習の活用はあくまで手段であると認識することです。課題解決において別の手段(手作業によるラベリングなど)でも十分に費用対効果が見込める場合は、無理に活用する必要はありません。

 手段と目的が逆になっていないか、基本的な検討事項ながら疎かにしてはいけません。

  • このエントリーをはてなブックマークに追加

関連ホワイトペーパー

SpecialPR

連載

CIO
ハードから読み解くITトレンド放談
大木豊成「仕事で使うアップルのトリセツ」
研究現場から見たAI
ITは「ひみつ道具」の夢を見る
内製化とユーザー体験の関係
米ZDNet編集長Larryの独り言
今週の明言
「プロジェクトマネジメント」の解き方
田中克己「2020年のIT企業」
松岡功「一言もの申す」
林 雅之「デジタル未来からの手紙」
谷川耕一「エンプラITならこれは知っとけ」
Fintechの正体
内山悟志「IT部門はどこに向かうのか」
情報通信技術の新しい使い方
三国大洋のスクラップブック
大河原克行のエンプラ徒然
コミュニケーション
情報系システム最適化
モバイル
通信のゆくえを追う
セキュリティ
企業セキュリティの歩き方
サイバーセキュリティ未来考
セキュリティの論点
ネットワークセキュリティ
スペシャル
Gartner Symposium
企業決算
ソフトウェア開発パラダイムの進化
座談会@ZDNet
Dr.津田のクラウドトップガン対談
CSIRT座談会--バンダイナムコや大成建設、DeNAに聞く
創造的破壊を--次世代SIer座談会
「SD-WAN」の現在
展望2017
IBM World of Watson
de:code
Sapphire Now
VMworld
Microsoft WPC
HPE Discover
Oracle OpenWorld
Dell EMC World
AWS re:Invent
AWS Summit
PTC LiveWorx
古賀政純「Dockerがもたらすビジネス変革」
さとうなおきの「週刊Azureなう」
誰もが開発者になる時代 ~業務システム開発の現場を行く~
中国ビジネス四方山話
より賢く活用するためのOSS最新動向
「Windows 10」法人導入の手引き
Windows Server 2003サポート終了へ秒読み
米株式動向
実践ビッグデータ
日本株展望
ベトナムでビジネス
アジアのIT
10の事情
エンタープライズトレンド
クラウドと仮想化